Sensor-based trajectory deformation: Application to reactive navigation of nonholonomic robots

被引:0
作者
Lamiraux F. [1 ]
Lefebvre O. [1 ]
机构
[1] LAAS, CNRS, Toulouse 31077
来源
Lecture Notes in Control and Information Sciences | 2010年 / 401卷
关键词
Deformation process - Infinitesimal perturbations - Input functions - Input perturbation - Non-holonomic robot - Objective functions - Reactive navigation - Wheeled mobile robot;
D O I
10.1007/978-1-84996-089-2_17
中图分类号
学科分类号
摘要
In this chapter, we present a sensor-based trajectory deformation process for nonholonomic robots. The method is based on infinitesimal perturbations of the input functions of the current trajectory. Input perturbation is computed in such a way that a an objective function decreases and that the trajectory initial and final configurations are kept unchanged. The method is then extended to docking for wheeled mobile robots. The final configuration of the deformation process is moved to a configuration in order to make perception fit a docking pattern. The method is demonstrated on mobile robot Hilare 2 towing a trailer. © 2010 Springer-Verlag London.
引用
收藏
页码:315 / 334
页数:19
相关论文
共 20 条
[1]  
Barraquand J., Latombe J.C., Robot motion planning: A distributed representation approach, International Journal on Robotics Research, 10, 6, pp. 628-649, (1991)
[2]  
Brock O., Khatib O., Real-time replanning in high dimensional configuration spaces using sets of homotopic paths, International Conference on Robotics and Automation, pp. 550-555, (2000)
[3]  
Divelbiss A., Wen J., A path space approach to nonholonomic motion planning in the presence of obstacles, IEEE Transactions on Robotics and Automation, 13, 3, pp. 443-451, (1997)
[4]  
Fernandes C., Gurvits L., Li Z., Optimal nonholonomic motion planning for a falling cat, Nonholonomic Motion Planning, pp. 379-421, (1993)
[5]  
Fiorini P., Shiller Z., Motion planning in dynamic environments using velocity obstacles, International Journal on Robotics Research, 17, 7, pp. 760-772, (1998)
[6]  
Khatib M., Jaouni H., Chatila R., Laumond J.P., Dynamic path modification for carlike nonholonomic mobile robots, International Conference on Robotics and Automation, pp. 2920-2925, (1997)
[7]  
Khatib O., Real-time obstacle avoidance for manipulators and mobile robots, International Journal on Robotics Research, 5, 1, pp. 90-98, (1986)
[8]  
Lamiraux F., Bonnafous D., Lefebvre O., Reactive path deformation for nonholonomic mobile robots, IEEE Transactions on Robotics, 20, 6, pp. 967-977, (2004)
[9]  
Lamiraux F., Sekhavat S., Laumond J.P., Motion planning and control for hilare pulling a trailer, IEEE Transactions on Robotics and Automation, 15, 4, pp. 640-652, (1999)
[10]  
Large F., Sekhavat S., Shiller Z., Laugier C., Toward real-time global motion planning in a dynamic environment using the nlvo concept, International Conference on Intelligent Robots and Systems, pp. 607-612, (2002)