Introducing Oxygen Vacancies into a WO3 Photoanode through NaH2PO2 Treatment for Efficient Water Splitting

被引:1
作者
Huang, Qiuyang [1 ]
Zhao, Yicheng [1 ]
Li, Yongdan [2 ]
机构
[1] Tianjin Univ, Sch Chem Engn & Technol, Tianjin 300072, Peoples R China
[2] Aalto Univ, Dept Chem & Met Engn, Kemistintie 1, FI-00076 Aalto, Finland
基金
中国国家自然科学基金;
关键词
HIGHLY EFFICIENT; CHARGE-TRANSFER; OXIDE; PERFORMANCE; FILMS; ION;
D O I
10.1021/acs.langmuir.4c02870
中图分类号
O6 [化学];
学科分类号
0703 ;
摘要
WO3, with a high light absorption capacity and a suitable band structure, is considered a promising photoanode material for photoelectrochemical water splitting. However, the poor photoinduced electron-hole separation efficiency limits its application. Herein, we report an effective strategy to suppress electron-hole recombination by introducing oxygen vacancies (OV) on the surface of a WO3 photoanode through NaH2PO2 treatment. An OV-enriched amorphous surface layer with a thickness of 4 nm is formed after NaH2PO2 treatment, which increases the charge carrier density and enlarges the electrochemical surface area of the photoanode. The charge separation and surface injection efficiencies are both improved after NaH2PO2 treatment, and the charge transfer process of the photoanode is accelerated consequently. The current density of the modified WO3 photoanode reaches 0.96 mA cm-2 at 1.23 V.
引用
收藏
页码:23845 / 23852
页数:8
相关论文
共 60 条
[1]   BiVO4 charge transfer control by a water-insoluble iron complex for solar water oxidation [J].
Benko, Timea ;
Shen, Shaohua ;
Nemeth, Miklos ;
Su, Jinzhan ;
Szamosvolgyi, Akos ;
Kovacs, Zoltan ;
Safran, Gyorgy ;
Al-Zuraiji, Sahir M. ;
Horvath, Endre Zsolt ;
Sapi, Andras ;
Konya, Zoltan ;
Pap, Jozsef Sandor .
APPLIED CATALYSIS A-GENERAL, 2023, 652
[2]   Cocatalysts-Photoanode Interface in Photoelectrochemical Water Splitting: Understanding and Insights [J].
Chen, Runyu ;
Meng, Linxing ;
Xu, Weiwei ;
Li, Liang .
SMALL, 2024, 20 (01)
[3]   Determining the role of oxygen vacancies in the photoelectrocatalytic performance of WO3 for water oxidation [J].
Corby, Sacha ;
Francas, Laia ;
Kafizas, Andreas ;
Durrant, James R. .
CHEMICAL SCIENCE, 2020, 11 (11) :2907-2914
[4]   Current trending and beyond for solar-driven water splitting reaction on WO3 photoanodes [J].
Costa, Magno B. ;
de Araujo, Moises A. ;
Tinoco, Marcos V. de Lima ;
de Brito, Juliana F. ;
Mascaro, Lucia H. .
JOURNAL OF ENERGY CHEMISTRY, 2022, 73 :88-113
[5]   Advanced oxygen evolution reaction catalysts for solar-driven photoelectrochemical water splitting [J].
Dong, Guojun ;
Yan, Lianglin ;
Bi, Yingpu .
JOURNAL OF MATERIALS CHEMISTRY A, 2023, 11 (08) :3888-3903
[6]   Regulation of electron delocalization between flower-like (Co, Ni)-MOF array and WO3/W photoanode for effective photoelectrochemical water splitting [J].
Dong, Pengyu ;
Pan, Jinkang ;
Zhang, Lihua ;
Yang, Xiu-Li ;
Xie, Ming-Hua ;
Zhang, Jinlong .
APPLIED CATALYSIS B-ENVIRONMENT AND ENERGY, 2024, 350
[7]   Improving PEC Performance of BiVO4 by Introducing Bulk Oxygen Vacancies by He+ Ion Irradiation [J].
Duan, Hui ;
Wu, Hengyi ;
Zhong, Huizhou ;
Wang, Xuening ;
Wan, Wenjing ;
Li, Derun ;
Cai, Guangxu ;
Jiang, Changzhong ;
Ren, Feng .
JOURNAL OF PHYSICAL CHEMISTRY C, 2022, 126 (17) :7688-7695
[8]   An overview on WO3 based photocatalyst for environmental remediation [J].
Dutta, Vishal ;
Sharma, Sheetal ;
Raizada, Pankaj ;
Thakur, Vijay Kumar ;
Khan, Aftab Aslam Parvaz ;
Saini, Vipin ;
Asiri, Abdullah M. ;
Singh, Pardeep .
JOURNAL OF ENVIRONMENTAL CHEMICAL ENGINEERING, 2021, 9 (01)
[9]   Enriched Surface Oxygen Vacancies of Photoanodes by Photoetching with Enhanced Charge Separation [J].
Feng, Shijia ;
Wang, Tuo ;
Liu, Bin ;
Hu, Congling ;
Li, Lulu ;
Zhao, Zhi-Jian ;
Gong, Jinlong .
ANGEWANDTE CHEMIE-INTERNATIONAL EDITION, 2020, 59 (05) :2044-2048
[10]   Synergistical Dual Strategies Based on in Situ-Converted Heterojunction and Reduction-Induced Surface Oxygen Vacancy for Enhanced Photoelectrochemical Performance of TiO2 [J].
He, Yanfang ;
Wang, Peipei ;
Zhu, Jianfei ;
Yang, Ying ;
Liu, Yuan ;
Chen, Mingming ;
Cao, Dawei ;
Yan, Xiaohong .
ACS APPLIED MATERIALS & INTERFACES, 2019, 11 (40) :37322-37329