Entanglement Distribution in a Quantum Network: A Multicommodity Flow-Based Approach

被引:62
作者
Chakraborty, Kaushik [1 ,2 ]
Elkouss, David [1 ]
Rijsman, Bruno [1 ]
Wehner, Stephanie [1 ,2 ]
机构
[1] Delft Univ Technol, QuTech, NL-2628 Delft, Netherlands
[2] Delft Univ Technol, Kavli Inst Nanosci, NL-2628 Delft, Netherlands
来源
IEEE TRANSACTIONS ON QUANTUM ENGINEERING | 2020年 / 1卷
关键词
Entanglement distribution; end-to-end fidelity; linear programming; multi-commodity flow; routing; quantum internet; REPEATERS;
D O I
10.1109/TQE.2020.3028172
中图分类号
TP301 [理论、方法];
学科分类号
081202 ;
摘要
We consider the problem of optimizing the achievable EPR-pair distribution rate between multiple source-destination pairs in a quantum Internet, where the repeaters may perform a probabilistic Bell-state measurement and we may impose a minimum end-to-end fidelity as a requirement. We construct an efficient linear programming (LP) formulation that computes the maximum total achievable entanglement distribution rate, satisfying the end-to-end fidelity constraint in polynomial time (in the number of nodes in the network). Our LP formulation gives the optimal rate for a class of entanglement generation protocols where the repeaters have very short-lived quantum memories. We also propose an efficient algorithm that takes the output of the LP solver as an input and runs in polynomial time (in the number of nodes) to produce the set of paths to be used to achieve the entanglement distribution rate. Moreover, we point out a practical entanglement generation protocol that can achieve those rates.
引用
收藏
页数:21
相关论文
共 41 条
[1]   Aggregating quantum repeaters for the quantum internet [J].
Azuma, Koji ;
Kato, Go .
PHYSICAL REVIEW A, 2017, 96 (03)
[2]   Fundamental rate-loss trade-off for the quantum internet [J].
Azuma, Koji ;
Mizutani, Akihiro ;
Lo, Hoi-Kwong .
NATURE COMMUNICATIONS, 2016, 7
[3]   Linear programs for entanglement and key distribution in the quantum internet [J].
Bauml, Stefan ;
Azuma, Koji ;
Kato, Go ;
Elkouss, David .
COMMUNICATIONS PHYSICS, 2020, 3 (01)
[4]   Fundamental limitation on quantum broadcast networks [J].
Bauml, Stefan ;
Azuma, Koji .
QUANTUM SCIENCE AND TECHNOLOGY, 2017, 2 (02)
[5]   TELEPORTING AN UNKNOWN QUANTUM STATE VIA DUAL CLASSICAL AND EINSTEIN-PODOLSKY-ROSEN CHANNELS [J].
BENNETT, CH ;
BRASSARD, G ;
CREPEAU, C ;
JOZSA, R ;
PERES, A ;
WOOTTERS, WK .
PHYSICAL REVIEW LETTERS, 1993, 70 (13) :1895-1899
[6]   Quantum cryptography: Public key distribution and coin tossing [J].
Bennett, Charles H. ;
Brassard, Gilles .
THEORETICAL COMPUTER SCIENCE, 2014, 560 :7-11
[7]   Quantum repeaters:: The role of imperfect local operations in quantum communication [J].
Briegel, HJ ;
Dür, W ;
Cirac, JI ;
Zoller, P .
PHYSICAL REVIEW LETTERS, 1998, 81 (26) :5932-5935
[8]   Modeling viral diffusion using quantum computational network simulation [J].
Britt, Brian C. .
Quantum Engineering, 2020, 2 (01)
[9]   Optimal Routing for Quantum Networks [J].
Caleffi, Marcello .
IEEE ACCESS, 2017, 5 :22299-22312
[10]  
Chakraborty Kaushik, 2020, 4TU.ResearchData, V1, DOI 10.4121/UUID:4A0AFE1D-5D96-4A90-ABC8-4B4E61967BA3