Lithium-ion battery SOH estimation method based on multi-feature and CNN-KAN

被引:0
|
作者
Zhang, Zhao [1 ]
Liu, Xin [2 ]
Zhang, Runrun [3 ]
Liu, Xu Ming [4 ]
Chen, Shi [1 ]
Sun, Zhexuan [2 ]
Jiang, Heng [5 ]
机构
[1] College of Intelligent Science and Control Engineering, Jinling Institute of Technology, Jiangsu, Nanjing
[2] College of Intelligent Systems Science and Engineering, Harbin Engineering University, Harbin
[3] Institute of Advanced Materials, Nanjing Tech University, Nanjing
[4] College of Mechanical and Electrical Engineering, Jinling Institute of Technology, Jiangsu, Nanjing
[5] School of Energy and Power Engineering, Nanjing Institute of Technology, Nanjing
关键词
convolutional neural network; kolmogorov-arnold network; lithium-ion battery; multi-feature; state of health;
D O I
10.3389/fenrg.2024.1494473
中图分类号
学科分类号
摘要
The promotion of electric vehicles brings notable environmental and economic advantages. Precisely estimating the state of health (SOH) of lithium-ion batteries is crucial for maintaining their efficiency and safety. This study introduces an SOH estimation approach for lithium-ion batteries that integrates multi-feature analysis with a convolutional neural network and kolmogorov-arnold network (CNN-KAN). Initially, we measure the charging time, current, and temperature during the constant voltage phase. These include charging duration, the integral of current over time, the chi-square value of current, and the integral of temperature over time, which are combined to create a comprehensive multi-feature set. The CNN’s robust feature extraction is employed to identify crucial features from raw data, while KAN adeptly models the complex nonlinear interactions between these features and SOH, enabling accurate SOH estimation for lithium batteries. Experiments were carried out at four different charging current rates. The findings indicate that despite significant nonlinear declines in the SOH of lithium batteries, this method consistently provides accurate SOH estimations. The root mean square error (RMSE) is below 1%, with an average coefficient of determination (R2) exceeding 98%. Compared to traditional methods, the proposed method demonstrates significant advantages in handling the nonlinear degradation trends in battery life prediction, enhancing the model’s generalization ability as well as its reliability in practical applications. It holds significant promise for future research in SOH estimation of lithium batteries. Copyright © 2024 Zhang, Liu, Zhang, Liu, Chen, Sun and Jiang.
引用
收藏
相关论文
共 50 条
  • [41] Estimation of SoH and internal resistances of Lithium ion battery based on LSTM network
    Van, Chi Nguyen
    Quang, Duy Ta
    INTERNATIONAL JOURNAL OF ELECTROCHEMICAL SCIENCE, 2023, 18 (10):
  • [42] Single Frequency Feature Point Derived from DRT for SOH Estimation of Lithium Ion Battery
    Jiang, Daiyan
    Zhang, Yuan
    Gao, Zitong
    Zhang, Ziheng
    Li, Siquan
    Jin, Yuhong
    Liu, Jingbing
    Wang, Hao
    JOURNAL OF THE ELECTROCHEMICAL SOCIETY, 2025, 172 (03)
  • [43] Novel method for modelling and adaptive estimation for SOC and SOH of lithium-ion batteries
    Li, Zuxin
    Shen, Shengyu
    Zhou, Zhe
    Cai, Zhiduan
    Gu, Weimin
    Zhang, Fengying
    JOURNAL OF ENERGY STORAGE, 2023, 62
  • [44] Study on Lithium-ion Battery SOH Estimation Based on Incremental Capacity Analysis and Deep Learning
    Park M.-S.
    Kim J.-S.
    Kim B.-W.
    Transactions of the Korean Institute of Electrical Engineers, 2024, 73 (02) : 349 - 357
  • [45] SOH Estimation of Lithium-Ion Battery Pack Based on Integrated State Information from Cells
    Wang, Xiaohong
    Fan, Wenhui
    Li, Shixiang
    Li, Xinjun
    Wang, Lizhi
    APPLIED SCIENCES-BASEL, 2020, 10 (19):
  • [46] Edge-cloud collaborative estimation lithium-ion battery SOH based on MEWOA-VMD and Transformer
    Chen, Yuan
    Huang, Xiaohe
    He, Yigang
    Zhang, Siyuan
    Cai, Yujing
    JOURNAL OF ENERGY STORAGE, 2024, 99
  • [47] SOC and SOH Estimation for a Lithium-Ion Battery Using a Novel Adaptive Observer Based Approach
    Gholizadeh, Mehdi
    Yazdizadeh, Alireza
    2020 28TH IRANIAN CONFERENCE ON ELECTRICAL ENGINEERING (ICEE), 2020, : 215 - 220
  • [48] A SOH Estimation Study on Lithium-Ion Battery based on Incremental Capacity and Differential Voltage Analysis
    Park, Seong Yun
    Lee, Pyeong Yeon
    Yoo, Ki Soo
    Kim, Jong Hoon
    TRANSACTIONS OF THE KOREAN SOCIETY OF MECHANICAL ENGINEERS A, 2021, 45 (03) : 259 - 266
  • [49] Comparative Analysis of Neural Networks Techniques for Lithium-ion Battery SOH Estimation
    Aliberti, Alessandro
    Boni, Filippo
    Perol, Alessandro
    Zampolli, Marco
    Jaboeuf, Remi Jacques Philibert
    Tosco, Paolo
    Macii, Enrico
    Patti, Edoardo
    2022 IEEE 46TH ANNUAL COMPUTERS, SOFTWARE, AND APPLICATIONS CONFERENCE (COMPSAC 2022), 2022, : 1355 - 1361
  • [50] Explainability-driven model improvement for SOH estimation of lithium-ion battery
    Wang, Fujin
    Zhao, Zhibin
    Zhai, Zhi
    Shang, Zuogang
    Yan, Ruqiang
    Chen, Xuefeng
    RELIABILITY ENGINEERING & SYSTEM SAFETY, 2023, 232