Monte-Carlo Ray-tracing Simulations of Perovskite Quantum Dots-based Luminescent Solar Concentrators

被引:0
作者
Shu J.-P. [1 ]
Wang P.-J. [1 ]
Zhang X.-W. [1 ]
Xie K.-H. [1 ]
Zhang H.-H. [1 ]
Chen R.-W. [1 ]
机构
[1] Faculty of Electrical Engineering and Computer Science, Ningbo University, Ningbo
来源
Faguang Xuebao/Chinese Journal of Luminescence | 2019年 / 40卷 / 04期
基金
中国国家自然科学基金;
关键词
Monte Carlo simulation; Photoluminescence; Photovoltaic device; Quantum dots;
D O I
10.3788/fgxb20194004.0484
中图分类号
学科分类号
摘要
The inevitable thermal effects, complex device structure and high manufacturing cost severely hinder the development of the conventional solar concentrators. As a type of novel solar concentrators, luminescent solar concentrator shows numerous potentials to significantly reduce the cost of solar cells and attracts much attentions. Here, the all-inorganic perovskite CsPbBr3 quantum dots are synthesized via a hot-injection approach and then the CsPbBr3-based luminescent solar concentrators are designed and fabricated. According to TEM characterization and spectroscopic measurements, the CsPbBr3 quantum dots exhibit the typical cubic structure, the quantum yield of up to 76.8%, and the PL emission at 512 nm with the FWHM of 22 nm. Further, the optimal quantum dots doping concentration and the average optical collecting efficiency are confirmed by the calculation based on Monte Carlo intelligent optimization algorithm. The optimal average collecting efficiency is 5.4% when CsPbBr3 quantum dots doping concentration is fixed at 2.1×10-5 mol/L. We anticipate this numerical simulation process based on Monte Carlo intelligent optimization algorithm will shed light on the future research for determining the characteristic parameter of luminescent solar concentrators. © 2019, Science Press. All right reserved.
引用
收藏
页码:484 / 490
页数:6
相关论文
共 21 条
[1]  
Green M.A., Hishikawa Y., Dunlop E.D., Et al., Solar cell efficiency tables (version 52), Prog. Photovoltaics, 26, 7, pp. 427-436, (2018)
[2]  
Yu L.W., Yu Z.W., Qian C.Y., Et al., Recent progresses in developing high performance radial junction thin film solar cells, J. Nanjing Univ. (Nat. Sci.), 50, 3, pp. 302-308, (2014)
[3]  
Kabir E., Kumar P., Kumar S., Et al., Solar energy: potential and future prospects, Renew. Sustain. Energy Rev., 82, pp. 894-900, (2018)
[4]  
Lyu X., Research on American solar PV market and forecast, Chin. J. Lumin., 39, 4, pp. 595-599, (2018)
[5]  
Weber W.H., Lambe J., Luminescent greenhouse collector for solar radiation, Appl. Opt., 15, 10, pp. 2299-2300, (1976)
[6]  
Bradshaw L.R., Knowles K.E., Mcdowall S., Et al., Nanocrystals for luminescent solar concentrators, Nano Lett., 15, 2, pp. 1315-1323, (2015)
[7]  
Meinardi F., Colombo A., Velizhanin K.A., Et al., Large-area luminescent solar concentrators based on 'Stokes-shift-engineered' nanocrystals in a mass-polymerized PMMA matrix, Nat. Photon., 8, 5, pp. 392-399, (2014)
[8]  
Meinardi F., Mcdaniel H., Carulli F., Et al., Highly efficient large-area colourless luminescent solar concentrators using heavy-metal-free colloidal quantum dots, Nat. Nanotechnol., 10, 10, pp. 878-885, (2015)
[9]  
Zhou Y.F., Benetti D., Fan Z.Y., Et al., Near infrared, highly efficient luminescent solar concentrators, Adv. Energy Mater., 6, 11, (2016)
[10]  
Meinardi F., Ehrenberg S., Dhamo L., Et al., Highly efficient luminescent solar concentrators based on earth-abundant indirect-bandgap silicon quantum dots, Nat. Photon., 11, 3, pp. 177-185, (2017)