Ramsey numbers and triangle-free cayley graphs

被引:0
作者
Department of Mathematics, Tongji University, Shanghai [1 ]
200092, China
机构
[1] Department of Mathematics, Tongji University, Shanghai
来源
Tongji Daxue Xuebao | / 11卷 / 1750-1752期
关键词
Maximal sum-free set; Ramsey number; Triangle-free Cayley graph;
D O I
10.11908/j.issn.0253-374x.2015.11.021
中图分类号
学科分类号
摘要
Let Zn={0, 1, …, n} be the additive group of integers modulo n and let Zn*=Zn{0}. For an inverse-closed subset A⊆Zn*, let Gn (A) be the Cayley graph on vertex set Zn, in which {x, y} is an edge if and only if |x-y|∈ A. We compute the independence numbers for triangle-free Cayley graphs of orders up to 258, which improves the known lower bounds for Ramsey numbers r (3, q) for 27≤ q≤ 38. © 2015, Science Press. All right reserved.
引用
收藏
页码:1750 / 1752
页数:2
相关论文
共 5 条
[1]  
Godsil C., Royle G., Agebraic Graph Theory, (2001)
[2]  
Graham R., Rothschild B., Spencer J., Ramsey Theory, (1990)
[3]  
Wu K., Su W., Luo H., Et al., New lower bound for seven classical Ramsey numbers R (3, q), Appl Math Lett, 22, (2009)
[4]  
Wu K., Su W., Luo H., Et al., A generalization of generalized Paley graphs and new lower bounds for R (3, q), Electron J Combin, (2010)
[5]  
Chen H., Wu K., Xu X., Et al., New lower bound for nine classical Ramsey numbers R (3, t), Journal of Mathematics, 31, (2011)