Global well-posedness of the free-surface incompressible ideal MHD equations with velocity damping

被引:0
作者
Liu, Mengmeng [1 ]
Jiang, Han [2 ]
Zhang, Yajie [3 ]
机构
[1] Huaibei Normal Univ, Sch Math & Stat, Huaibei 235000, Anhui, Peoples R China
[2] Fuzhou Univ, Sch Math & Stat, Fuzhou 350116, Peoples R China
[3] Inst Appl Phys & Computat Math, Beijing 100088, Peoples R China
来源
ZEITSCHRIFT FUR ANGEWANDTE MATHEMATIK UND PHYSIK | 2024年 / 75卷 / 06期
关键词
Non-resistive MHD fluids; Inviscid fluids; Damping; Free boundary; Global well-posedness; FREE-BOUNDARY PROBLEM; WATER-WAVE PROBLEM; EULER EQUATIONS; SOBOLEV SPACES; TENSION LIMIT; MOTION; MAGNETOHYDRODYNAMICS; FLUID; DECAY;
D O I
10.1007/s00033-024-02337-1
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
This paper concerns the free-surface problem of incompressible ideal MHD fluids with velocity damping in a two-dimensional (2D) horizontally periodic slab domain impressed by a uniform horizontal magnetic field. We prove that the problem is globally well-posed for the small initial data and the solution decays exponentially in time to the equilibrium, where both the Taylor sign condition and the surface tension are not required in this paper due to the stabilizing effect of horizontal magnetic field.
引用
收藏
页数:15
相关论文
共 38 条
[1]  
ADAMS R. A., 2003, Sobolev spaces, V140
[2]   On the Cauchy problem for gravity water waves [J].
Alazard, T. ;
Burq, N. ;
Zuily, C. .
INVENTIONES MATHEMATICAE, 2014, 198 (01) :71-163
[3]   The Zero Surface Tension Limit of Three-dimensional Water Waves [J].
Ambrose, David M. ;
Masmoudi, Nader .
INDIANA UNIVERSITY MATHEMATICS JOURNAL, 2009, 58 (02) :479-521
[4]   The zero surface tension limit of two-dimensional water waves [J].
Ambrose, DM ;
Masmoudi, N .
COMMUNICATIONS ON PURE AND APPLIED MATHEMATICS, 2005, 58 (10) :1287-1315
[5]  
[Anonymous], 1974, Din. Splos. Sredy
[6]   GROWTH-RATES FOR THE LINEARIZED MOTION OF FLUID INTERFACES AWAY FROM EQUILIBRIUM [J].
BEALE, JT ;
HOU, TY ;
LOWENGRUB, JS .
COMMUNICATIONS ON PURE AND APPLIED MATHEMATICS, 1993, 46 (09) :1269-1301
[7]  
Christodoulou D, 2000, COMMUN PUR APPL MATH, V53, P1536, DOI 10.1002/1097-0312(200012)53:12<1536::AID-CPA2>3.0.CO
[8]  
2-Q
[9]   Well-posedness of the free-surface incompressible Euler equations with or without surface tension [J].
Coutand, Daniel ;
Shkoller, Steve .
JOURNAL OF THE AMERICAN MATHEMATICAL SOCIETY, 2007, 20 (03) :829-930
[10]   A SIMPLE PROOF OF WELL-POSEDNESS FOR THE FREE-SURFACE INCOMPRESSIBLE EULER EQUATIONS [J].
Coutand, Daniel ;
Shkoller, Steve .
DISCRETE AND CONTINUOUS DYNAMICAL SYSTEMS-SERIES S, 2010, 3 (03) :429-449