Effect of Mo nanoparticles on microstructure and mechanical properties of Cu alloys by self-propagating and spark plasma sintering

被引:8
作者
Sun, J. Y. [1 ,2 ]
Zhang, L. C. [2 ]
Liu, R. [2 ]
Xie, Z. M. [2 ]
Yang, J. F. [2 ]
Xie, X. F. [2 ]
Wang, X. P. [2 ]
Fang, Q. F. [2 ]
Liu, C. S. [2 ]
Wu, Xuebang [1 ,2 ]
机构
[1] Univ Sci & Technol China, Hefei 230026, Peoples R China
[2] Chinese Acad Sci, Inst Solid State Phys, Key Lab Mat Phys, HFIPS, Hefei 230031, Peoples R China
来源
MATERIALS SCIENCE AND ENGINEERING A-STRUCTURAL MATERIALS PROPERTIES MICROSTRUCTURE AND PROCESSING | 2024年 / 916卷
基金
中国国家自然科学基金;
关键词
Powder metallurgy; Dispersion-strengthened metals; Mechanical properties; Cu alloys; STRUCTURAL-MATERIALS; COMPOSITES; STRENGTH; FISSION; ZR;
D O I
10.1016/j.msea.2024.147305
中图分类号
TB3 [工程材料学];
学科分类号
0805 ; 080502 ;
摘要
Cu alloys strengthened with Mo nanoparticle, with Mo contents of 2 at.%, 4 at.%, 6 at.%, 8 at.%, and 10 at.%, were fabricated by self-propagating high-temperature synthesis, followed by two-step hydrogen reduction and spark plasma sintering. The microstructures, mechanical properties, and thermal conductivity of these Cu-Mo alloys were investigated. The results reveal that two-step hydrogen reduction effectively reduces the average Mo particle size to 13.8 nm compared to one-step reduction. With increasing Mo content, the average grain size of Cu initially decreases but then increases due to the segregation of Mo particles. Notably, the Cu-6 at.% Mo alloy exhibits the smallest average grain size of 0.46 mu m, with dispersed nanoscale Mo particles of 25.6 nm. The Cu-6 at.% Mo alloy demonstrates superior mechanical properties, with a tensile strength of 405.0 MPa and an elongation of 24.9 %. Furthermore, the Cu-6 at.% Mo alloy has a high thermal conductivity of 320.0 Wm(-1)K(-1) even at 400 degrees C and a high electrical conductivity of 82.3 % IACS at room temperature. This work offers valuable insights for the design of advanced Cu composites suitable for heat sink applications.
引用
收藏
页数:10
相关论文
共 53 条
[51]   Applicability of copper alloys for DEMO high heat flux components [J].
Zinkle, Steven J. .
PHYSICA SCRIPTA, 2016, T167
[52]   Structural materials for fission & fusion energy [J].
Zinkle, Steven J. ;
Busby, Jeremy T. .
MATERIALS TODAY, 2009, 12 (11) :12-19
[53]  
ZUO Ke-sheng, 2021, Results Mater, V9