Effect of Mo nanoparticles on microstructure and mechanical properties of Cu alloys by self-propagating and spark plasma sintering

被引:8
作者
Sun, J. Y. [1 ,2 ]
Zhang, L. C. [2 ]
Liu, R. [2 ]
Xie, Z. M. [2 ]
Yang, J. F. [2 ]
Xie, X. F. [2 ]
Wang, X. P. [2 ]
Fang, Q. F. [2 ]
Liu, C. S. [2 ]
Wu, Xuebang [1 ,2 ]
机构
[1] Univ Sci & Technol China, Hefei 230026, Peoples R China
[2] Chinese Acad Sci, Inst Solid State Phys, Key Lab Mat Phys, HFIPS, Hefei 230031, Peoples R China
来源
MATERIALS SCIENCE AND ENGINEERING A-STRUCTURAL MATERIALS PROPERTIES MICROSTRUCTURE AND PROCESSING | 2024年 / 916卷
基金
中国国家自然科学基金;
关键词
Powder metallurgy; Dispersion-strengthened metals; Mechanical properties; Cu alloys; STRUCTURAL-MATERIALS; COMPOSITES; STRENGTH; FISSION; ZR;
D O I
10.1016/j.msea.2024.147305
中图分类号
TB3 [工程材料学];
学科分类号
0805 ; 080502 ;
摘要
Cu alloys strengthened with Mo nanoparticle, with Mo contents of 2 at.%, 4 at.%, 6 at.%, 8 at.%, and 10 at.%, were fabricated by self-propagating high-temperature synthesis, followed by two-step hydrogen reduction and spark plasma sintering. The microstructures, mechanical properties, and thermal conductivity of these Cu-Mo alloys were investigated. The results reveal that two-step hydrogen reduction effectively reduces the average Mo particle size to 13.8 nm compared to one-step reduction. With increasing Mo content, the average grain size of Cu initially decreases but then increases due to the segregation of Mo particles. Notably, the Cu-6 at.% Mo alloy exhibits the smallest average grain size of 0.46 mu m, with dispersed nanoscale Mo particles of 25.6 nm. The Cu-6 at.% Mo alloy demonstrates superior mechanical properties, with a tensile strength of 405.0 MPa and an elongation of 24.9 %. Furthermore, the Cu-6 at.% Mo alloy has a high thermal conductivity of 320.0 Wm(-1)K(-1) even at 400 degrees C and a high electrical conductivity of 82.3 % IACS at room temperature. This work offers valuable insights for the design of advanced Cu composites suitable for heat sink applications.
引用
收藏
页数:10
相关论文
共 53 条
[1]   Microstructure and mechanical properties of mechanically alloyed ODS copper alloy for fusion material application [J].
Aghamiri, S. M. S. ;
Oono, N. ;
Ukai, S. ;
Kasada, R. ;
Noto, H. ;
Hishinuma, Y. ;
Muroga, T. .
NUCLEAR MATERIALS AND ENERGY, 2018, 15 :17-22
[2]   Structural study of nanocrystalline solid solution of Cu-Mo obtained by mechanical alloying [J].
Aguilar, C. ;
Castro, F. ;
Martinez, V. ;
Guzman, D. ;
de las Cuevas, F. ;
Lozada, L. ;
Vielma, N. .
MATERIALS SCIENCE AND ENGINEERING A-STRUCTURAL MATERIALS PROPERTIES MICROSTRUCTURE AND PROCESSING, 2012, 548 :189-194
[3]   Improving the mechanical properties and coefficient of thermal expansion of molybdenum-reinforced copper using powder metallurgy [J].
Ahmadein, M. ;
El-Kady, Omayma A. ;
Mohammed, M. M. ;
Essa, Fadl A. ;
Alsaleh, Naser A. ;
Djuansjah, Joy ;
Elsheikh, Ammar H. .
MATERIALS RESEARCH EXPRESS, 2021, 8 (09)
[4]   Microstructure and mechanical properties of Cu/SiC metal matrix composite fabricated via friction stir processing [J].
Akramifard, H. R. ;
Shamanian, M. ;
Sabbaghian, M. ;
Esmailzadeh, M. .
MATERIALS & DESIGN, 2014, 54 :838-844
[5]   Production of Al-Co-Ni Ternary Alloys by the SHS Method for Use in Nickel Based Superalloys Manufacturing [J].
Alkan, Murat ;
Sonmez, M. Seref ;
Derin, Bora ;
Yucel, Onuralp ;
Andreev, Dmitrii E. ;
Sanin, Vladimir N. ;
Yukhvid, Vladimir I. .
HIGH TEMPERATURE MATERIALS AND PROCESSES, 2015, 34 (03) :275-283
[6]   Characterization of oxide dispersion strengthened copper based materials developed by friction stir processing [J].
Avettand-Fenoel, M. -N. ;
Simar, A. ;
Shabadi, R. ;
Taillard, R. ;
de Meester, B. .
MATERIALS & DESIGN, 2014, 60 :343-357
[7]   Thermal Conductivity of Yttria-Gadolinia Solid Solution Optical Ceramics in the Temperature Range 50-300 K [J].
Balabanov, Stanislav ;
Evstropov, Timofey ;
Permin, Dmitry ;
Postnikova, Olga ;
Praded, Alexander ;
Popov, Pavel .
INORGANICS, 2022, 10 (06)
[8]   Assessment of emission uniformity for micro-irrigation design [J].
Barragan, J ;
Bralts, V ;
Wu, IP .
BIOSYSTEMS ENGINEERING, 2006, 93 (01) :89-97
[9]   Space fission reactor structural materials: Choices past, present and future [J].
Busby, J. T. ;
Leonard, K. J. .
JOM, 2007, 59 (04) :20-+
[10]   Microstructure and properties of hot extruded Cu-1 wt% Al2O3 nano-composites synthesized by various techniques [J].
Chandrasekhar, S. B. ;
Sarma, S. Sudhakara ;
Ramakrishna, M. ;
Babu, P. Suresh ;
Rao, Tata N. ;
Kashyap, B. P. .
MATERIALS SCIENCE AND ENGINEERING A-STRUCTURAL MATERIALS PROPERTIES MICROSTRUCTURE AND PROCESSING, 2014, 591 :46-53