Nanocomposite Hydrogels from Nanodiamonds and a Self-Assembling Tripeptide

被引:1
|
作者
Marin, Davide [1 ]
Kralj, Slavko [2 ,3 ]
Stehlik, Stepan [4 ,5 ]
Marchesan, Silvia [1 ]
机构
[1] Univ Trieste, Dept Chem & Pharmaceut Sci, Via Giorgieri 1, I-34127 Trieste, Italy
[2] Jozef Stefan Inst, Dept Mat Synth, Jamova 39, Ljubljana 1000, Slovenia
[3] Univ Ljubljana, Fac Pharm, Pharmaceut Technol Dept, Askerceva 7, Ljubljana 1000, Slovenia
[4] Czech Acad Sci, Inst Phys, Dept Semicond, Cukrovarnicka 10, Prague 16200, Czech Republic
[5] Univ West Bohemia, New Technol Res Ctr, Univ 8, Plzen 30100, Czech Republic
关键词
Peptides; Nanodiamonds; Nanocomposites; Self-Assembly; Gels; CARBON NANOTUBES; RAMAN-SPECTRA; PROTEINS; BENZENE;
D O I
10.1002/chem.202402961
中图分类号
O6 [化学];
学科分类号
0703 ;
摘要
We report the successful assembly of a tripeptide in the presence of nanodiamonds (NDs) into nanocomposite hydrogels. While the presence of NDs does not hinder peptide self-assembly and gelation kinetics are not affected, NDs improve the viscoelastic properties and significantly increase the elastic moduli of the peptide hydrogels. Increased resistance of the gels against applied stress can also be attained depending on the amount of NDs loaded in the nanocomposite. Raman micro-spectroscopy and TEM confirmed the presence of NDs on the surface, and not in the interior, of peptide nanofibers. Peptide-ND non-covalent interactions are also probed by Raman and Fourier-transformed infrared spectroscopies. Overall, this work enables the embedding of NDs into nanocomposite hydrogels formed through the self-assembly of a simple tripeptide at physiological pH, and it provides key insights to open the way for their future applications in biomaterials, for instance exploiting their luminescence and near-infrared responsiveness.
引用
收藏
页数:6
相关论文
共 50 条
  • [41] RELEASE OF MODEL MACROMOLECULES FROM SELF-ASSEMBLING PEPTIDE HYDROGELS FOR INJECTABLE DELIVERY
    Branco, M.
    Wagner, N.
    Pochan, D.
    Schneider, J.
    BIOPOLYMERS, 2009, 92 (04) : 318 - 318
  • [42] Reversible hydrogels from self-assembling genetically engineered protein block copolymers
    Xu, CY
    Breedveld, V
    Kopecek, J
    BIOMACROMOLECULES, 2005, 6 (03) : 1739 - 1749
  • [43] Racemic hydrogels from self-assembling enantiomeric peptides: Predictions from Linus Pauling
    Schneider, Joel
    ABSTRACTS OF PAPERS OF THE AMERICAN CHEMICAL SOCIETY, 2015, 249
  • [44] Self-assembling tripeptide as organogelator: the role of aromatic π-stacking interactions in gel formation
    Dutta, Arpita
    Chattopadhyay, Dipankar
    Pramanik, Animesh
    SUPRAMOLECULAR CHEMISTRY, 2010, 22 (02) : 95 - 102
  • [45] Self-assembling hydrogels based on β-cyclodextrin/cholesterol inclusion complexes
    van de Manakker, Frank
    van der Pot, Martin
    Vermonden, Tina
    van Nostrum, Cornelus F.
    Hennink, Wim E.
    MACROMOLECULES, 2008, 41 (05) : 1766 - 1773
  • [46] Modification of Peptide Self-Assembling Hydrogels for Cell Culture Applications
    Szkolar, L.
    Miller, A. F.
    Saiani, A.
    Gough, J. E.
    TISSUE ENGINEERING PART A, 2014, 20 : S118 - S118
  • [47] Self-Assembling Polypeptide Hydrogels as a Platform to Recapitulate the Tumor Microenvironment
    Lachowski, Dariusz
    Matellan, Carlos
    Cortes, Ernesto
    Saiani, Alberto
    Miller, Aline F.
    del Rio Hernandez, Armando E.
    CANCERS, 2021, 13 (13)
  • [48] SELF-ASSEMBLING PEPTIDE HYDROGELS FOR NUCLEUS AUGMENTATION OF THE INTERVERTEBRAL DISC
    Culbert, Matthew
    Warren, James
    Fermor, Hazel
    Beales, Paul
    Wilcox, Ruth
    TISSUE ENGINEERING PART A, 2023, 29 (11-12) : 1642 - 1643
  • [49] The innate immune response of self-assembling silk fibroin hydrogels
    Gorenkova, Natalia
    Maitz, Manfred F.
    Bohme, Georg
    Alhadrami, Hani A.
    Jiffri, Essam H.
    Totten, John D.
    Werner, Carsten
    Carswell, Hilary V. O.
    Seib, F. Philipp
    BIOMATERIALS SCIENCE, 2021, 9 (21) : 7194 - 7204
  • [50] Biomimetic Self-Assembling Peptide Hydrogels for Tissue Engineering Applications
    Lu, Jiaju
    Wang, Xiumei
    BIOMIMETIC MEDICAL MATERIALS: FROM NANOTECHNOLOGY TO 3D BIOPRINTING, 2018, 1064 : 297 - 312