共 11 条
- [1] Agarwal S., Awan A., Roth D., Learning to detect objects in images via a sparse, part-based representation, IEEE Trans. on Pattern Analysis and Machine Intelligence, 26, 11, pp. 1475-1490, (2004)
- [2] Bouwmans T., El Baf F., Vachon B., Background modeling using mixture of Gaussians for foreground detection-A survey, Recent Patents on Computer Science, November, 1, 3, pp. 219-237, (2008)
- [3] Dalley G., Migdal J., Grimson W., Background subtraction for temporally irregular dynamic textures, WACV 2008, pp. 1-7, (2008)
- [4] Dickinson P., Hunter A., Scene modelling using an adaptive mixture of Gaussians in colour and space, IEEE Conf. on Advanced Video and Signal Based Surveillance (AVSS 2005), pp. 64-69, (2005)
- [5] Mukherjee S., Das K., An adaptive GMM approach to background subtraction for application in real time surveillance, International Journal of Research in Engineering and Technology, 2, 1, pp. 25-29, (2013)
- [6] Shimada A., Arita D., Taniguchi R., Dynamic control of adaptive mixture-of-Gaussians background model, AVSS 2006, (2006)
- [7] Shimada A., Tanaka T., Arita D., Taniguchi R., Spatial-temporal integration of adaptive Gaussian mixture background models, Korea-Japan Joint Workshop on Frontiers of Computer Vision, FCV 2008, (2008)
- [8] Stauffer C., Grimson W.E.L., Adaptive background mixture models for real-time tracking, IEEE International Conference on Computer Vision and Pattern Recognition, 2, pp. 246-252, (1999)
- [9] Wang H., Miller P., Regularized online mixture of Gaussians for background subtraction, IEEE International Conference on Advanced Video and Signal-Based Surveillance, AVSS 2011, (2011)
- [10] Zang Q., Klette R., Parameter analysis for mixture of gaussians, CITR Technical Report, 188, (2006)