Fabrication of a 3D-printed electrode applied to electrochemical sensing of lamotrigine

被引:0
|
作者
Negahdary, Masoud [1 ,2 ]
Sakthinathan, Indherjith [3 ]
Kodam, Rohit Sai [1 ,2 ]
Forster, Robert [3 ]
Cote, Gerard L. [1 ,2 ,4 ]
Mabbott, Samuel [1 ,2 ]
机构
[1] Texas A&M Univ, Dept Biomed Engn, 101 Bizzel St, College Stn, TX 77843 USA
[2] Texas A&M Engn Expt Stn, Ctr Remote Hlth Technol & Syst, 600 Discovery Dr, College Stn, TX 77840 USA
[3] Dublin City Univ, Sch Chem Sci, Glasnevin Campus, Dublin, Ireland
[4] Texas A&M Univ, Dept Elect Engn, College Stn, TX 77843 USA
基金
美国国家科学基金会;
关键词
3D-printed electrode; Conductive filament; Graphene Oxide (GO); Thorn-like gold nanostructure (TLGNS); Lamotrigine (LTG); Epilepsy; Electrochemical sensor;
D O I
10.1016/j.apmt.2024.102491
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
A novel miniature 3D-printed electrode featuring a working area made from conductive filament, with the electrode body formed through resin injection and UV curing is described. To enhance the conductivity and electrochemical performance, the electrode surface was laser ablated, and modified with graphene oxide (GO), and thorn-like gold nanostructure (TLGNS). The electrode was then utilized for the sensitive detection of lamotrigine (LTG), an important anti-epilepsy drug, using chronoamperometry. This method yielded a linear detection range from 0.01 nmol L- 1 to 300 mu mol L- 1, a limit of detection (LOD) of 0.01 nmol L- 1, and a limit of quantification (LOQ) of 0.05 nmol L- 1. Additionally, the electrochemical sensor demonstrated excellent intrasensor reproducibility, with a relative standard deviation of 1.5 % (n = 9, single sensor).
引用
收藏
页数:13
相关论文
共 50 条
  • [21] 3D-printed electrochemical platform with multi-purpose carbon black sensing electrodes
    Silva-Neto, Habdias A.
    Dias, Anderson A.
    Coltro, Wendell K. T.
    MICROCHIMICA ACTA, 2022, 189 (06)
  • [22] Fabrication of a 3D-Printed Porous Junction for Ag|AgCl|gel-KCl Reference Electrode
    Sibug-Torres, Sarah May
    Go, Lance P.
    Enriquez, Erwin P.
    CHEMOSENSORS, 2020, 8 (04) : 1 - 20
  • [23] Fabrication and performance of 3D-printed bidirectional cantilever sensors
    Farid, Muhammad Imran
    Wu, Wenzheng
    Li, Guiwei
    MATERIALS LETTERS, 2025, 389
  • [24] Fabrication of Biodegradable, 3D-Printed, Oxygen Releasing Scaffolds
    Farris, A. L.
    Grayson, W. L.
    TISSUE ENGINEERING PART A, 2017, 23 : S53 - S53
  • [25] Direct Ink Writing for Electrochemical Device Fabrication: A Review of 3D-Printed Electrodes and Ink Rheology
    Polychronopoulos, Nickolas D.
    Brouzgou, Angeliki
    CATALYSTS, 2024, 14 (02)
  • [26] Electrolysis Activation of Fused-Filament-Fabrication 3D-Printed Electrodes for Electrochemical and Spectroelectrochemical Analysis
    Wirth, Denise M.
    Sheaff, Marjorie J.
    Waldman, Julia V.
    Symcox, Miranda P.
    Whitehead, Heather D.
    Sharp, James D.
    Doerfler, Jacob R.
    Lamar, Angus A.
    LeBlanc, Gabriel
    ANALYTICAL CHEMISTRY, 2019, 91 (09) : 5553 - 5557
  • [27] Fully integrated 3D-printed electrochemical cell with a modified inkjet-printed Ag electrode for voltammetric nitrate analysis
    Sibug-Torres, Sarah May
    Go, Lance P.
    Castillo, Virgil Christian G.
    Pauco, Jiena Lynne R.
    Enriquez, Erwin P.
    ANALYTICA CHIMICA ACTA, 2021, 1160
  • [28] 3D-printed metal electrodes for electrochemical detection of phenols
    Cheng, Tay Siew
    Nasir, Muhammad Zafir Mohamad
    Ambrosi, Adriano
    Pumera, Martin
    APPLIED MATERIALS TODAY, 2017, 9 : 212 - 219
  • [29] 3D-printed Electrochemical Sensor for Organophosphate Nerve Agents
    Jyoti
    Redondo, Edurne
    Alduhaish, Osamah
    Pumera, Martin
    ELECTROANALYSIS, 2023, 35 (01) : 139 - 144
  • [30] Strain sensing characteristics of 3D-printed conductive plastics
    McGhee, J. R.
    Sinclair, M.
    Southee, D. J.
    Wijayantha, K. G. U.
    ELECTRONICS LETTERS, 2018, 54 (09) : 570 - 571