Random forest-based active learning for content-based image retrieval

被引:0
|
作者
Bhosle N. [1 ]
Kokare M. [2 ]
机构
[1] Department of Electronics and Telecommunication Engineering, D.Y. Patil College of Engineering, Ambi, Pune
[2] Department of Electronics and Telecommunication Engineering, S.G.G.S. Institute of Engineering and Technology, Vishnupuri, Nanded
来源
Bhosle, Nilesh (bhoslenp@gmail.com) | 1600年 / Inderscience Publishers, 29, route de Pre-Bois, Case Postale 856, CH-1215 Geneva 15, CH-1215, Switzerland卷 / 13期
关键词
Active learning; CBIR; Content-based image retrieval; Feature reweighting; Information retrieval; Random forest learning; Relevance feedback; Semantic gap;
D O I
10.1504/IJIIDS.2020.108223
中图分类号
学科分类号
摘要
The classification-based relevance feedback approach suffers from the problem of imbalanced training dataset, which causes instability and degradation in the retrieval results. In order to tackle with this problem, a novel active learning approach based on random forest classifier and feature reweighting technique is proposed in this paper. Initially, a random forest classifier is used to learn the user's retrieval intention. Then, in active learning the most informative classified samples are selected for manual labelling and added in training dataset, for retraining the classifier. Also, a feature reweighting technique based on Hebbian learning is embedded in the retrieval loop to find the weights of most perceptive features used for image representation. These techniques are combined together to form a hypothesised solution for the image retrieval problem. The experimental evaluation of the proposed system is carried out on two different databases and shows a noteworthy enhancement in retrieval results. Copyright © 2020 Inderscience Enterprises Ltd.
引用
收藏
页码:72 / 88
页数:16
相关论文
共 50 条
  • [31] Probabilistic feature relevance learning for content-based image retrieval
    Peng, Jing
    Bhanu, Bir
    Qing, Shan
    Computer Vision and Image Understanding, 1999, 75 (01): : 150 - 164
  • [32] CONTENT-BASED VESSEL IMAGE RETRIEVAL
    Mukherjee, Satabdi
    Cohen, Samuel
    Gertner, Izidor
    AUTOMATIC TARGET RECOGNITION XXVI, 2016, 9844
  • [33] Content-based image retrieval methods
    N. S. Vassilieva
    Programming and Computer Software, 2009, 35 : 158 - 180
  • [34] Content-based image and video retrieval
    Vasconcelos, N
    SIGNAL PROCESSING, 2005, 85 (02) : 231 - 232
  • [35] Faceted content-based image retrieval
    Amato, Giuseppe
    Meghini, Carlo
    DEXA 2008: 19TH INTERNATIONAL CONFERENCE ON DATABASE AND EXPERT SYSTEMS APPLICATIONS, PROCEEDINGS, 2008, : 402 - 406
  • [36] Content-Based Image Retrieval Research
    Duan, Guoyong
    Yang, Jing
    Yang, Yilong
    2011 INTERNATIONAL CONFERENCE ON PHYSICS SCIENCE AND TECHNOLOGY (ICPST), 2011, 22 : 471 - 477
  • [37] A new content-based image retrieval
    Zhang, Zhen-Hua
    Quan, Yong
    Li, Wen-Hui
    Guo, Wu
    PROCEEDINGS OF 2006 INTERNATIONAL CONFERENCE ON MACHINE LEARNING AND CYBERNETICS, VOLS 1-7, 2006, : 4013 - +
  • [38] Content-based image retrieval with WISFC
    Zhang, H. (guwenjiao1989@126.com), 1600, Binary Information Press (10):
  • [39] Prefetching for content-based image retrieval
    Yoon, J
    Jayant, N
    IEEE INTERNATIONAL CONFERENCE ON MULTIMEDIA AND EXPO, VOL I AND II, PROCEEDINGS, 2002, : A413 - A416
  • [40] Quicklook: a content-based image retrieval system with learning capabilities
    Ciocca, G
    Gagliardi, I
    Schettini, R
    IEEE INTERNATIONAL CONFERENCE ON MULTIMEDIA COMPUTING AND SYSTEMS, PROCEEDINGS VOL 2, 1999, : 1028 - 1029