A posteriori stopping criteria for space-time domain decomposition for the heat equation in mixed formulations

被引:0
|
作者
Hassan S.A. [1 ]
Japhet C. [2 ]
Vohralík M. [3 ]
机构
[1] Inria Paris, 2 rue Simone Iff, Paris
[2] Université Paris-Est, CERMICS (ENPC), Marne-la-Vallée 2
[3] Université Paris 13, Sorbonne Paris Cité, LAGA, CNRS (UMR 7539), Villetaneuse
来源
| 2018年 / Kent State University卷 / 49期
基金
欧洲研究理事会; 欧盟地平线“2020”;
关键词
A posteriori error estimate; Global-in-time domain decomposition; Mixed finite element method; Nonconforming time grids; Robin interface conditions; Stopping criteria;
D O I
10.1553/etna-vol49s151
中图分类号
学科分类号
摘要
We propose and analyze a posteriori estimates for global-in-time, nonoverlapping domain decomposition methods for heterogeneous and anisotropic porous media diffusion problems. We consider mixed formulations with a lowest-order Raviart-Thomas-Nédélec discretization often used for such problems. Optimized Robin transmission conditions are employed on the space-time interface between subdomains, and different time grids are used to adapt to different time scales in the subdomains. Our estimators allow to distinguish the spatial discretization, the temporal discretization, and the domain decomposition error components. We design an adaptive space-time domain decomposition algorithm, wherein the iterations are stopped when the domain decomposition error does not affect significantly the global error. Overall, a guaranteed bound for the overall error is obtained at each iteration of the space-time domain decomposition algorithm, and simultaneously important savings in terms of the number of domain decomposition iterations can be achieved. Numerical results for two-dimensional problems with strong heterogeneities and local time-stepping are presented to illustrate the performance of our adaptive domain decomposition algorithm. Copyright © 2018, Kent State University.
引用
收藏
页码:151 / 181
页数:30
相关论文
共 50 条
  • [21] SPACE-TIME VIRTUAL ELEMENTS FOR THE HEAT EQUATION
    Gomez, Sergio
    Mascotto, Lorenzo
    Moiola, Andrea
    Perugia, Ilaria
    SIAM JOURNAL ON NUMERICAL ANALYSIS, 2024, 62 (01) : 199 - 228
  • [22] Strong Space-Time Convexity and the Heat Equation
    Chau, Albert
    Weinkove, Ben
    INDIANA UNIVERSITY MATHEMATICS JOURNAL, 2021, 70 (04)
  • [23] Domain space-time decomposition method for hyperbolic equations
    Agouzal, A
    Debit, N
    COMPTES RENDUS DE L ACADEMIE DES SCIENCES SERIE I-MATHEMATIQUE, 1996, 323 (08): : 957 - 960
  • [24] A space-time domain decomposition approach using enhanced velocity mixed finite element method
    Singh, Gurpreet
    Wheeler, Mary F.
    JOURNAL OF COMPUTATIONAL PHYSICS, 2018, 374 : 893 - 911
  • [25] A Time-Adaptive Space-Time FMM for the Heat Equation
    Watschinger, Raphael
    Of, Guenther
    COMPUTATIONAL METHODS IN APPLIED MATHEMATICS, 2023, 23 (02) : 445 - 471
  • [26] Space-time boundary element methods for the heat equation
    Dohr, Stefan
    Niino, Kazuki
    Steinbach, Olaf
    SPACE-TIME METHODS: APPLICATIONS TO PARTIAL DIFFERENTIAL EQUATIONS, 2019, 25 : 1 - 60
  • [27] A Geometric Space-Time Multigrid Algorithm for the Heat Equation
    Weinzierl, Tobias
    Koeppl, Tobias
    NUMERICAL MATHEMATICS-THEORY METHODS AND APPLICATIONS, 2012, 5 (01) : 110 - 130
  • [28] A POSTERIORI ANALYSIS FOR SPACE-TIME, DISCONTINUOUS IN TIME GALERKIN APPROXIMATIONS FOR PARABOLIC EQUATIONS IN A VARIABLE DOMAIN
    Antonopoulou, Dimitra
    Plexousakis, Michael
    ESAIM-MATHEMATICAL MODELLING AND NUMERICAL ANALYSIS-MODELISATION MATHEMATIQUE ET ANALYSE NUMERIQUE, 2019, 53 (02): : 523 - 549
  • [29] Space-time domain decomposition methods for scalar conservation law
    Agouzal, A
    Debit, N
    COMMUNICATIONS IN NUMERICAL METHODS IN ENGINEERING, 1997, 13 (10): : 777 - 783
  • [30] A Space-Time Mixed Galerkin Marching-on-in-Time Scheme for the Time-Domain Combined Field Integral Equation
    Beghein, Yves
    Cools, Kristof
    Bagci, Hakan
    De Zutter, Daniel
    IEEE TRANSACTIONS ON ANTENNAS AND PROPAGATION, 2013, 61 (03) : 1228 - 1238