A posteriori stopping criteria for space-time domain decomposition for the heat equation in mixed formulations

被引:0
|
作者
Hassan S.A. [1 ]
Japhet C. [2 ]
Vohralík M. [3 ]
机构
[1] Inria Paris, 2 rue Simone Iff, Paris
[2] Université Paris-Est, CERMICS (ENPC), Marne-la-Vallée 2
[3] Université Paris 13, Sorbonne Paris Cité, LAGA, CNRS (UMR 7539), Villetaneuse
来源
| 2018年 / Kent State University卷 / 49期
基金
欧洲研究理事会; 欧盟地平线“2020”;
关键词
A posteriori error estimate; Global-in-time domain decomposition; Mixed finite element method; Nonconforming time grids; Robin interface conditions; Stopping criteria;
D O I
10.1553/etna-vol49s151
中图分类号
学科分类号
摘要
We propose and analyze a posteriori estimates for global-in-time, nonoverlapping domain decomposition methods for heterogeneous and anisotropic porous media diffusion problems. We consider mixed formulations with a lowest-order Raviart-Thomas-Nédélec discretization often used for such problems. Optimized Robin transmission conditions are employed on the space-time interface between subdomains, and different time grids are used to adapt to different time scales in the subdomains. Our estimators allow to distinguish the spatial discretization, the temporal discretization, and the domain decomposition error components. We design an adaptive space-time domain decomposition algorithm, wherein the iterations are stopped when the domain decomposition error does not affect significantly the global error. Overall, a guaranteed bound for the overall error is obtained at each iteration of the space-time domain decomposition algorithm, and simultaneously important savings in terms of the number of domain decomposition iterations can be achieved. Numerical results for two-dimensional problems with strong heterogeneities and local time-stepping are presented to illustrate the performance of our adaptive domain decomposition algorithm. Copyright © 2018, Kent State University.
引用
收藏
页码:151 / 181
页数:30
相关论文
共 50 条
  • [1] A POSTERIORI STOPPING CRITERIA FOR SPACE-TIME DOMAIN DECOMPOSITION FOR THE HEAT EQUATION IN MIXED FORMULATIONS
    Hassan, Sarah Ali
    Japhet, Caroline
    Vohralik, Martin
    ELECTRONIC TRANSACTIONS ON NUMERICAL ANALYSIS, 2018, 49 : 151 - 181
  • [2] A Posteriori Stopping Criteria for Optimized Schwarz Domain Decomposition Algorithms in Mixed Formulations
    Hassan, Sarah Ali
    Japhet, Caroline
    Kern, Michel
    Vohralik, Martin
    COMPUTATIONAL METHODS IN APPLIED MATHEMATICS, 2018, 18 (03) : 495 - 519
  • [3] Space-Time Domain Decomposition for Mixed Formulations of Diffusion Equations
    Thi-Thao-Phuong Hoang
    Jaffre, Jerome
    Japhet, Caroline
    Kern, Michel
    Roberts, Jean
    DOMAIN DECOMPOSITION METHODS IN SCIENCE AND ENGINEERING XXI, 2014, 98 : 295 - 304
  • [4] SPACE-TIME DOMAIN DECOMPOSITION METHODS FOR DIFFUSION PROBLEMS IN MIXED FORMULATIONS
    Thi-Thao-Phuong Hoang
    Jaffre, Jerome
    Japhet, Caroline
    Kern, Michel
    Roberts, Jean E.
    SIAM JOURNAL ON NUMERICAL ANALYSIS, 2013, 51 (06) : 3532 - 3559
  • [5] Space-time domain decomposition for advection-diffusion problems in mixed formulations
    Thi-Thao-Phuong Hoang
    Japhet, Caroline
    Kern, Michel
    Roberts, Jean E.
    MATHEMATICS AND COMPUTERS IN SIMULATION, 2017, 137 : 366 - 389
  • [6] SPACE-TIME DOMAIN DECOMPOSITION FOR REDUCED FRACTURE MODELS IN MIXED FORMULATION
    Thi-Thao-Phuong Hoang
    Japhet, Caroline
    Kern, Michel
    Roberts, Jean E.
    SIAM JOURNAL ON NUMERICAL ANALYSIS, 2016, 54 (01) : 288 - 316
  • [7] SPACE-TIME BALANCING DOMAIN DECOMPOSITION
    Badia, Santiago
    Olm, Marc
    SIAM JOURNAL ON SCIENTIFIC COMPUTING, 2017, 39 (02): : C194 - C213
  • [8] Space-time discretization of the heat equation
    Andreev, Roman
    NUMERICAL ALGORITHMS, 2014, 67 (04) : 713 - 731
  • [9] SPACE-TIME ESTIMATE TO HEAT EQUATION
    Wang Yidong
    Jiang Lingyu
    JOURNAL OF PARTIAL DIFFERENTIAL EQUATIONS, 2007, 20 (03): : 247 - 251
  • [10] Space-time discretization of the heat equation
    Roman Andreev
    Numerical Algorithms, 2014, 67 : 713 - 731