Laminar burning characteristics of ammonia and hydrogen blends at elevated initial pressures up to 2.5 MPa

被引:2
|
作者
Wang, Ning [1 ]
Li, Tie [1 ,2 ]
Guo, Xinpeng [1 ]
Wu, Zehao [1 ]
Huang, Shuai [1 ,2 ]
Zhou, Xinyi [1 ,2 ]
Li, Shiyan [1 ,2 ]
Chen, Run [1 ,2 ]
机构
[1] Shanghai Jiao Tong Univ, State Key Lab Ocean Engn, Shanghai, Peoples R China
[2] Shanghai Jiao Tong Univ, Inst Power Plants & Automat, Shanghai, Peoples R China
基金
中国博士后科学基金; 中国国家自然科学基金;
关键词
Laminar burning velocity; Ammonia; Hydrogen; Elevated pressure; Kinetic study; NH3/H-2/AIR PREMIXED FLAMES; MARKSTEIN LENGTH; VELOCITY; COMBUSTION; OXIDATION; NH3/SYNGAS/AIR; TEMPERATURE; NH3/CO/AIR; CHEMISTRY; MIXTURES;
D O I
10.1016/j.cej.2024.157283
中图分类号
X [环境科学、安全科学];
学科分类号
08 ; 0830 ;
摘要
Ammonia is a highly promising alternative fuel, and blending it with hydrogen can mitigate its poor combustion performance. However, the combustion mechanism of ammonia-hydrogen mixtures requires further validation through measurements of laminar burning velocity, particularly under high-pressure conditions relevant to practical combustors. Experimental data at high initial pressures (>1.0 MPa) are notably scarce. In this study, experiments were conducted using an outwardly propagating spherical flame in a high-pressure, high-temperature, constant-volume combustion chamber to determine the laminar burning velocities of ammonia-hydrogen blends at elevated initial pressures. The effects of different equivalence ratios (0.6 similar to 1.4), volumetric hydrogen ratios (0.1 similar to 0.6), and initial pressures (0.1 similar to 2.5 MPa) were evaluated. Chemical kinetics of ammonia and hydrogen combustion was investigated at high pressures. The experimental results were compared with the simulation results under a wide range of conditions using several existing mechanisms to evaluate their applicability. The results show that the laminar burning velocity increases first and then decreases as the equivalence ratio (phi) increases and reaches a maximum value around phi of 1.1. The laminar burning velocity increases non-linearly with the volumetric hydrogen ratio, with more pronounced acceleration at higher hydrogen ratios. In contrast, the laminar burning velocity decreases non-linearly with the increasing initial pressure, and this reduction becomes progressively slower as the initial pressure rises. The predictive performance of the mechanisms by Okafor et al. and Gotama et al. is relatively satisfactory under certain conditions, but further optimization based on experimental data is necessary. Additionally, reaction pathway analysis of ammonia-hydrogen combustion indicates that introducing hydrogen increases the concentration of active radicals such as OH, O, and H, thereby enhancing ammonia combustion. Sensitivity analysis of the laminar burning velocity identified the critical elementary reactions across varying pressures, providing strong support for optimizing ammonia-hydrogen chemical kinetics models and developing simulation models for practical combustion systems.
引用
收藏
页数:16
相关论文
共 50 条
  • [31] Turbulent and Stable/Unstable Laminar Burning Velocity Measurements from Outwardly Propagating Spherical Hydrogen-Air Flames at Elevated Pressures
    Smallbone, Andrew
    Tsuneyoshi, Kousaku
    Kitagawa, Toshiaki
    JOURNAL OF THERMAL SCIENCE AND TECHNOLOGY, 2006, 1 (01): : 31 - 41
  • [32] Laminar burning velocity and cellular instability of 2-butanone-air flames at elevated pressures
    Li, Ya
    Jiang, Yong
    Xu, Wu
    Liew, K. M.
    FUEL, 2022, 316
  • [33] Laminar burning velocities of iso-octane, toluene, 1-hexene, ethanol and their quaternary blends at elevated temperatures and pressures
    Meng, Zhongwei
    Liang, Kun
    Fang, Jia
    FUEL, 2019, 237 : 630 - 636
  • [34] Laminar burning velocity of Ammonia/Air mixtures at high pressures
    Alvarez, Luis F.
    Shaffer, James
    Dumitrescu, Cosmin E.
    Askari, Omid
    FUEL, 2024, 363
  • [35] Ignition delay times, laminar flame speeds, and mechanism validation for natural gas/hydrogen blends at elevated pressures
    Donohoe, Nicola
    Heufer, Alexander
    Metcalfe, Wayne K.
    Curran, Henry J.
    Davis, Marissa L.
    Mathieu, Olivier
    Plichta, Drew
    Morones, Anibal
    Petersen, Eric L.
    Guethe, Felix
    COMBUSTION AND FLAME, 2014, 161 (06) : 1432 - 1443
  • [36] Effect of Ammonia on Laminar Combustion Characteristics of Methane-Air Flames at Elevated Pressures
    Jin, Tao
    Dong, Wenlong
    Qiu, Bingbing
    Xu, Cangsu
    Liu, Ya
    Chu, Huaqiang
    ACS OMEGA, 2022, 7 (17): : 15326 - 15337
  • [37] Effects of initial mixture temperature and pressure on laminar burning velocity and Markstein length of ammonia/air premixed laminar flames
    Kanoshima, Ryuhei
    Hayakawa, Akihiro
    Kudo, Takahiro
    Okafor, Ekenechukwu C.
    Colson, Sophie
    Ichikawa, Akinori
    Kudo, Taku
    Kobayashi, Hideaki
    FUEL, 2022, 310
  • [38] Data-driven prediction of laminar burning velocity for ternary ammonia/hydrogen/methane/air premixed flames
    Ustun, Cihat Emre
    Eckart, Sven
    Valera-Medina, Agustin
    Paykani, Amin
    FUEL, 2024, 368
  • [39] Effect of hydrogen addition on the laminar burning velocity and the flame stability of n-dodecane reacting with air at elevated pressures
    Rajesh, Natarajan
    Prathap, Chockalingam
    INTERNATIONAL JOURNAL OF HYDROGEN ENERGY, 2024, 49 : 193 - 207
  • [40] Ammonia/hydrogen laminar flame speed measurements at elevated temperatures
    Figueroa-Labastida, Miguel
    Zheng, Lingzhi
    Streicher, Jesse W.
    Hanson, Ronald K.
    INTERNATIONAL JOURNAL OF HYDROGEN ENERGY, 2024, 63 : 1137 - 1146