Laser hardening model development based on a semi-empirical approach

被引:0
作者
Department of Mechanical Engineering, University of the Basque Country, ETSII, c/Alameda de Urquijo s/n, 48013 Bilbao, Spain [1 ]
不详 [2 ]
机构
[1] Department of Mechanical Engineering, University of the Basque Country, ETSII, 48013 Bilbao, c/Alameda de Urquijo s/n
[2] Tecnalia Research and Innovation, Parque Tecnológico de Bizkaia, Edificio 202
来源
Int. J. Mechatronics Manuf. Syst. | 2012年 / 3-4卷 / 247-262期
关键词
AISI; 1045; Laser hardening; Numerical model; Quenching; Semi-empirical model; Surface treatment;
D O I
10.1504/IJMMS.2012.048231
中图分类号
学科分类号
摘要
The present research paper deals with laser surface hardening applied to medium carbon alloy steel AISI 1045. In order to control as much as possible the process, two different models were developed: a semi-empirical and a numerical model. To validate the results several experimental tests were carried out with a high power diode laser, measuring surface temperature with a two colour pyrometer. The process parameters considered in the study have been the laser power, from 1,700 to 1,900 Watt, and the interaction time, from 1 to 4 seconds, for a beam spot diameter of 10.2 mm. The results obtained in hardness value and heat affected zone depth show that the methodology explained is acceptable to evaluate laser hardening effects in an industrial application. Copyright © 2012 Inderscience Enterprises Ltd.
引用
收藏
页码:247 / 262
页数:15
相关论文
共 16 条
  • [1] Bachmann F., Loosen P., Poprawe R., High power diode lasers, Technology and Applications, (2007)
  • [2] Bala P., Pacyma J., Krawczyk J., The kinetics of phase transformations during tempering of cr-mo-v medium carbon steel, Journal of Achievements in Materials and Manufacturing Engineering, 20, 1-2, pp. 79-82, (2007)
  • [3] Dowden J.M., The Mathematics of Thermal Modeling: An Introduction to the Theory of Laser Material Processing, (2001)
  • [4] Elmer J.W., Palmer T.A., Zhang W., Wood B., Debroy T., Kinetic modeling of phase transformations occurring in the HAZ of C-Mn steel welds based on direct observations, Acta Materialia, 51, 12, pp. 3333-3349, (2003)
  • [5] Huiping L., Guoqun Z., Shating N., Chuanzhen H., FEM simulation of quenching process and experimental verification of simulation results, Materials Science and Engineering, 452-453, pp. 705-714, (2007)
  • [6] Lakhkar R.S., Shin Y.C., Krane M.J.M., Predictive modeling of multi-track laser hardening of AISI 4140 steel, Materials Science and Engineering A, 480, 1-2, pp. 209-217, (2008)
  • [7] Magnabosco I., Ferro P., Tiziani A., Bonollo F., Induction heat treatment of a ISO C45 steel bar: Experimental and numerical analysis, Computational Materials Science, 35, 2, pp. 98-106, (2006)
  • [8] Martinez S., Ukar E., Lamikiz A., Liebana F., Laser hardening prediction tool based on a solid state transformations numerical model, Paper Presented at the International Conference AMPT 2010: Advances in Materials and Processing Technologies, (2010)
  • [9] Martinez S., Ukar E., Lamikiz A., Lopez De Lacalle L.N., Celaya A., Desarrollo de una Herramienta para la Predicción del Campo Térmico en Operaciones de Tratamiento Superficial Mediante Laser Incluyendo los Cambios de Fase, Paper Presented at the 18 Congreso de Máquinas-Herramienta y Tecnologías de Fabricación, (2010)
  • [10] Meijer J., Van Sprang I., Optimization of laser beam transformation hardening by one single parameter, CIRP Annals, 40, 1, pp. 183-186, (1991)