Intrusion detection based on phishing detection with machine learning

被引:0
|
作者
Jayaraj R. [1 ]
Pushpalatha A. [2 ]
Sangeetha K. [3 ]
Kamaleshwar T. [4 ]
Udhaya Shree S. [5 ]
Damodaran D. [6 ]
机构
[1] Data Science and Business Systems, School of Computing, SRM Institute of Science and Technology, Kattankulathur, TN, Chennai
[2] M.Tech Computer Science and Engineering, Sri Krishna College of Engineering and Technology, TN, Coimbatore
[3] Department of Computer Science and Engineering, Panimalar Engineering College, Tamil Nadu, Chennai
[4] Department of Computer Science and Engineering, Vel Tech Dr. Rangarajan Dr.Sagunthala R&D Institute of Science and Technology, TN, Chennai
[5] Department of Computer Science and Engineering, Alpha College of Engineering and Technology, Puducherry
[6] VITBS, Vellore Institute of Technology, Chennai Campus, TN
来源
Measurement: Sensors | 2024年 / 31卷
关键词
Cyber attack; Intrusion detection; CDF-G; Machine learning; Phishing detection;
D O I
10.1016/j.measen.2023.101003
中图分类号
学科分类号
摘要
Machine learning technique which uses artificial neural networks to learn representations. Phishing is a form of fraud in which the attacker tries to learn credential information from the websites. Web phishing is to steal sensitive information such as usernames, passwords and credit card details by way of impersonating a authorized entity. The Hybrid Ensemble Feature Selection is a new feature selection method for machine learning-based phishing detection systems (HEFS). The first step of HEFS involves using a novel Cumulative Distribution Function gradient (CDF-g) algorithm to generate primary feature subsets, which are then fed into a data perturbation ensemble to generate secondary feature subsets. We present the results of our approach and compare them to a few previous studies, with the paper focusing primarily on phishing urls for detecting the unauthorised one by using phishing detection method. © 2023
引用
收藏
相关论文
共 50 条
  • [41] Machine Learning Approach Based on Hybrid Features for Detection of Phishing URLs
    Ghimire, Awishkar
    Jha, Avinash Kumar
    Thapa, Surendrahikram
    Mishra, Sushruti
    Jha, Aryan Mani
    2021 11TH INTERNATIONAL CONFERENCE ON CLOUD COMPUTING, DATA SCIENCE & ENGINEERING (CONFLUENCE 2021), 2021, : 954 - 959
  • [42] A machine learning based approach for phishing detection using hyperlinks information
    Ankit Kumar Jain
    B. B. Gupta
    Journal of Ambient Intelligence and Humanized Computing, 2019, 10 : 2015 - 2028
  • [43] Phishing Detection System Through Hybrid Machine Learning Based on URL
    Karim, Abdul
    Shahroz, Mobeen
    Mustofa, Khabib
    Belhaouari, Samir Brahim
    Joga, S. Ramana Kumar
    IEEE ACCESS, 2023, 11 : 36805 - 36822
  • [44] A machine learning based approach for phishing detection using hyperlinks information
    Jain, Ankit Kumar
    Gupta, B. B.
    JOURNAL OF AMBIENT INTELLIGENCE AND HUMANIZED COMPUTING, 2019, 10 (05) : 2015 - 2028
  • [45] Intrusion detection by machine learning: A review
    Tsai, Chih-Fong
    Hsu, Yu-Feng
    Lin, Chia-Ying
    Lin, Wei-Yang
    EXPERT SYSTEMS WITH APPLICATIONS, 2009, 36 (10) : 11994 - 12000
  • [46] Explainable Machine Learning for Intrusion Detection
    Bellegdi, Sameh
    Selamat, Ali
    Olatunji, Sunday O.
    Fujita, Hamido
    Krejcar, Ondfrej
    ADVANCES AND TRENDS IN ARTIFICIAL INTELLIGENCE: THEORY AND APPLICATIONS, IEA-AIE 2024, 2024, 14748 : 122 - 134
  • [47] Phishing Detection Leveraging Machine Learning and Deep Learning: A Review
    Divakaran, Dinil Mon
    Oest, Adam
    IEEE SECURITY & PRIVACY, 2022, 20 (05) : 86 - 95
  • [48] Phishing URL Detection Using Machine Learning and Deep Learning
    Ferdaws, Rawshon
    Majd, Nahid Ebrahimi
    2024 IEEE 5TH ANNUAL WORLD AI IOT CONGRESS, AIIOT 2024, 2024, : 0485 - 0490
  • [49] Effective intrusion detection model through the combination of a signature-based intrusion detection system and a machine learning-based intrusion detection system
    Weon, Ill-Young
    Song, Doo Heon
    Lee, Chang-Hoon
    JOURNAL OF INFORMATION SCIENCE AND ENGINEERING, 2006, 22 (06) : 1447 - 1464
  • [50] From Machine Learning Based Intrusion Detection to Cost Sensitive Intrusion Response
    Hussain, Tazar
    Beard, Alfie
    Chen, Liming
    Nugent, Chris
    Liu, Jun
    Moore, Adrian
    2022 6TH INTERNATIONAL CONFERENCE ON CRYPTOGRAPHY, SECURITY AND PRIVACY, CSP 2022, 2022, : 124 - 130