RPCM: A strategy to perform reliability analysis using polynomial chaos and resampling: Application to fatigue design

被引:0
作者
Notin A. [1 ]
Gayton N. [2 ]
Dulong J.L. [1 ]
Lemaire M. [2 ]
Villon P. [1 ]
Jaffal H. [3 ]
机构
[1] Laboratoire Roberval - FR CNRS 2833, Université de Technologie Compiègne, F-60206 Compiègne cedex
[2] Clermont Université, IFMA, EA 3867 Laboratoire de Mécanique et Ingénieries, F-63000 Clermont-Ferrand
[3] CETIM, F-60304 Senlis cedex
关键词
Bootstrap; Confidence intervals; Fatigue; Polynomial chaos; Reliability analysis;
D O I
10.3166/ejcm.19.795-830
中图分类号
学科分类号
摘要
Using stochastic finite elements, the response quantity can be written as a series expansion which allows an approximation of the limit state function. For computational purpose, the series must be truncated in order to retain only a finite number of terms. In the context of reliability analysis, we propose a new approach coupling polynomial chaos expansions and confidence intervals on the generalized reliability index as truncating criterion. © 2010 Lavoisier, Paris.
引用
收藏
页码:795 / 830
页数:35
相关论文
共 56 条
  • [1] Berveiller M., Sudret B., Lemaire M., Stochastic finite element - A non intrusive approach by regression, European Journal of Computational Mechanics, 15, 1-3, pp. 81-92, (2006)
  • [2] Bigerelle M., Najjar D., Fournier B., Rupin N., Iost A., Application of Lambda Distributions and Bootstrap analysis to the prediction of fatigue lifetime and confidence intervals, International Journal of Fatigue, 28, pp. 223-236, (2006)
  • [3] Blatman G., Sudret B., Sparse polynomial chaos expansions and adaptive stochastic finite elements using a regression approach, Comptes Rendus Mécanique, 336, 6, pp. 518-523, (2008)
  • [4] Blatman G., Sudret B., An adaptive algorithm to build up sparse polynomial chaos expansions for stochastic finite element analysis, Probabilistic Engineering Mechanics, 25, 2, pp. 183-197, (2010)
  • [5] Blatman G., Sudret B., Berveiller M., Quasi random numbers in stochastic finite element analysis, Mécanique et Industries, 8, 3, pp. 289-297, (2007)
  • [6] Carroll R., Ruppert D., Transformation AndWeighting in Regression, (1988)
  • [7] Cheng J., Li Q.S., Xiao R.C., A new artificial neural network-based response surface method for structural reliability analysis, Probabilistic Engineering Mechanics, 23, 1, pp. 51-63, (2008)
  • [8] Choi S., Grandhi R., Canfield R., Structural reliability under non-gaussian stochastic behaviour, Computers and Structures, 82, pp. 1113-1121, (2004)
  • [9] Choi S., Grandhi R., Canfield R., Pettit C., Polynomial chaos expansion with latin hypercube sampling for estimating response variability, AIAA, 42, 6, pp. 1191-1198, (2004)
  • [10] Van D.K., Griveau B., Message O., On a new multiaxial fatigue criterion: Theory and application. Biaxial and Multiaxial Fatigue, EFG 3, pp. 479-496, (1989)