Supramolecular Anchoring of Fe(III) Molecular Redox Catalysts into Graphitic Surfaces Via CH-π and π-π Interactions for CO2 Electroreduction

被引:3
作者
Luo, Zhi-Mei [1 ]
Wang, Jia-Wei [1 ]
Nicaso, Marco [1 ]
Gil-Sepulcre, Marcos [1 ]
Solano, Eduardo [2 ]
Nikolaou, Vasilis [1 ]
Benet, Jordi [1 ]
Segado-Centellas, Mireia [1 ,3 ]
Bo, Carles [1 ,3 ]
Llobet, Antoni [1 ]
机构
[1] Barcelona Inst Sci & Technol BIST, Inst Chem Res Catalonia ICIQ, Tarragona 43007, Spain
[2] ALBA Synchrotron Light Source, NCD SWEET Beamline, Carrer Llum 2 26, Cerdanyola Del Valles 08290, Barcelona, Spain
[3] Univ Rovira i Virgili, Dept Quiim Fis & Inorgan, Marcel Li Domingo S-N, Tarragona 43007, Spain
关键词
supramolecular interaction; CO2; reduction; iron porphyrin; molecular hybrid materials; CH-pi interaction; ELECTROCHEMICAL REDUCTION; METAL-COMPLEXES; EXCHANGE-ENERGY; EFFICIENT; CARBON; IMMOBILIZATION; APPROXIMATION; CONVERSION; NANOTUBES; PORPHYRIN;
D O I
10.1002/anie.202412188
中图分类号
O6 [化学];
学科分类号
0703 ;
摘要
Photoelectrochemical devices require solid anodes and cathodes for the easy assembling of the whole cell and thus redox catalysts need to be deposited on the electrodes. Typical catalyst deposition involves drop casting, spin coating, doctor blading or related techniques to generate modified electrodes where the active catalyst in contact with the electrolyte is only a very small fraction of the deposited mass. We have developed a methodology where the redox catalyst is deposited at the electrode based on supramolecular interactions, namely CH-pi and pi-pi between the catalyst and the surface. This generates a very well-defined catalysts-surface structure and electroactivity, together with a very large catalytic response. This approach represents a new anchoring strategy that can be applied to catalytic redox reactions in heterogeneous phase and compared to traditional methods involves about 4-5 orders of magnitude less mass deposition to achieve comparable activity and with very well-behaved electroactivity and stability.
引用
收藏
页数:8
相关论文
共 50 条
[21]   Status and challenges for CO2 electroreduction to CH4: advanced catalysts and enhanced strategies [J].
Li, Bingkun ;
Liu, Lu ;
Yue, Mingzhu ;
Niu, Qingman ;
Li, Min ;
Zhang, Tianyu ;
Xie, Wenfu ;
Wang, Qiang .
GREEN CHEMISTRY, 2024, 26 (01) :103-121
[22]   Boosting the electroreduction of CO2 to liquid products via nanostructure engineering of Cu2O catalysts [J].
Yang, Fangqi ;
Yang, Tonglin ;
Li, Jing ;
Li, Pengfei ;
Zhang, Quan ;
Lin, Huihui ;
Wu, Luyan .
JOURNAL OF CATALYSIS, 2024, 432
[23]   Boosting the Electroreduction of CO2 to Ethanol via the Synergistic Effect of Cu-Ag Bimetallic Catalysts [J].
Tang, Hehua ;
Liu, Yifan ;
Zhou, Yitian ;
Qian, Yao ;
Lin, Bo-Lin .
ACS APPLIED ENERGY MATERIALS, 2022, 5 (11) :14045-14052
[24]   CO2 Electroreduction over Metallic Oxide, Carbon-Based, and Molecular Catalysts: A Mini-Review of the Current Advances [J].
Ahsaine, Hassan Ait ;
Zbair, Mohamed ;
BaQais, Amal ;
Arab, Madjid .
CATALYSTS, 2022, 12 (05)
[25]   Highly Efficient Electroreduction of CO2 on Nickel Single-Atom Catalysts: Atom Trapping and Nitrogen Anchoring [J].
Mou, Kaiwen ;
Chen, Zhipeng ;
Zhang, Xinxin ;
Jiao, Mingyang ;
Zhang, Xiangping ;
Ge, Xin ;
Zhang, Wei ;
Liu, Licheng .
SMALL, 2019, 15 (49)
[26]   Unlocking the Activity of Molecular Assemblies for CO2 Electroreduction in Zero-Gap Electrolysers via Catalyst Ink Engineering [J].
Pellumbi, Kevinjeorjios ;
Kraeenbring, Mena-Alexander ;
Krisch, Dominik ;
Wiesner, Wiebke ;
Sanden, Sebastian ;
Siegmund, Daniel ;
Oezcan, Fatih ;
Puring, Kai junge ;
Cao, Rui ;
Schoefberger, Wolfgang ;
Segets, Doris ;
Apfel, Ulf-Peter .
SMALL, 2025, 21 (08)
[27]   Electrocatalytic reduction of CO2 to CO by Fe(<sc>iii</sc>) carbazole-porphyrins in homogeneous molecular systems [J].
Sun, Hai ;
Wu, Jiahui ;
Tian, Fengkun ;
Zhang, Guodong ;
Xia, Zixiang ;
Rong, Jiaxin ;
Qin, Jun-Sheng ;
Rao, Heng .
CATALYSIS SCIENCE & TECHNOLOGY, 2024, 14 (03) :660-666
[28]   Cu-Based Single-Atom Catalysts Boost Electroreduction of CO2 to CH3OH: First-Principles Predictions [J].
Zhao, Zhonglong ;
Lu, Gang .
JOURNAL OF PHYSICAL CHEMISTRY C, 2019, 123 (07) :4380-4387
[29]   Precise Construction of Cu-Based Catalysts using Surface Molecular Modifiers for Electroreduction of CO2 to Multi-Carbon Products [J].
Zhang, Tingting ;
He, Jing ;
Xiang, Xu .
CHEMCATCHEM, 2023, 15 (24)
[30]   Selective and Stable CO2 Electroreduction to CH4 via Electronic Metal-Support Interaction upon Decomposition/Redeposition of MOF [J].
Liu, Guanyu ;
Trinh, Quang Thang ;
Wang, Haojing ;
Wu, Shuyang ;
Arce-Ramos, Juan Manuel ;
Sullivan, Michael B. ;
Kraft, Markus ;
Ager, Joel W. W. ;
Zhang, Jia ;
Xu, Rong .
SMALL, 2023, 19 (41)