Concordance structure set of connected sum of projective spaces

被引:0
作者
Magar-Sawant, Priyanka [1 ]
机构
[1] Indian Inst Technol, Dept Math, Mumbai 400076, India
来源
PROCEEDINGS OF THE INDIAN ACADEMY OF SCIENCES-MATHEMATICAL SCIENCES | 2024年 / 134卷 / 02期
关键词
Connected sum of manifolds; projective spaces; concordance inertia group; INERTIA GROUPS;
D O I
10.1007/s12044-024-00800-7
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
In this paper, the concordance structure set of a connected sum of complex and quaternionic projective spaces of real dimension n, with 8 <= n <= 16\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$8\le n\le 16$$\end{document} is computed. It is demonstrated that the concordance inertia group of a connected sum equals the sum of individual concordance inertia groups. Furthermore, the concordance structure sets of manifolds and their connected sums are compared.
引用
收藏
页数:13
相关论文
共 20 条
[1]  
Aravinda C S, 2004, Algebraic groups and arithmetic, P507
[2]   Inertia groups and smooth structures on quaternionic projective spaces [J].
Basu, Samik ;
Kasilingam, Ramesh .
FORUM MATHEMATICUM, 2022, 34 (02) :369-383
[3]  
Hirsch Morris W., 1974, Smoothings of Piecewise Linear Manifolds
[4]  
Huang RZ, 2023, Arxiv, DOI arXiv:2204.04368
[5]  
Kasilingam R, 2017, Geometry and Topology
[6]  
Kasilingam R., 2017, JP J. Geom. Topol, V20, P91
[7]   Classification of smooth structures on a homotopy complex projective space [J].
Kasilingam, Ramesh .
PROCEEDINGS OF THE INDIAN ACADEMY OF SCIENCES-MATHEMATICAL SCIENCES, 2016, 126 (02) :277-281
[8]  
Kasprowski D., 2018, Amer. J. Math, V144, P118
[9]   INERTIA GROUPS OF LOW DIMENSIONAL COMPLEX PROJECTIVE SPACES AND SOME FREE DIFFERENTIABLE ACTIONS ON SPHERES .I. [J].
KAWAKUBO, K .
PROCEEDINGS OF THE JAPAN ACADEMY, 1968, 44 (09) :873-&
[10]   GROUPS OF HOMOTOPY SPHERES .1 [J].
KERVAIRE, MA ;
MILNOR, JW .
ANNALS OF MATHEMATICS, 1963, 77 (03) :504-&