Three-dimensional investigation of water distribution in a miniature PEM fuel cell

被引:0
作者
Krüger P.
Ulm H.M.
Klages M.
Haußmann J.
Ulm T.A.
Riesemeier H.
Hartnig C.
Ulm J.B.
Manke I.
Joachim Scholta U.
机构
来源
Materialpruefung/Materials Testing | 2010年 / 52卷 / 10期
关键词
Compendex;
D O I
10.3139/120.110177
中图分类号
学科分类号
摘要
Synchrotron radiation was applied for tomographic imaging to investigate the water distribution in the gas diffusion layer (GDL) of a low temperature polymer electrolyte membrane fuel cell (PEMFC). The high spatial resolution of down to 10 um allows for the analysis of water agglomerations in the porous structure of the GDL as well as in the flow field channels. Due to the threedimensional capturing of the cell a broad variety of issues concerning the fuel cell operation can be addressed. The fuel cell is operated at steady state conditions and tomographed directly after operation. Thus, tomograms can be captured and analyzed at various operating conditions. Insights into the cell assembly are possible from different viewing directions. In addition section views provide the basis for detailed investigations especially of the GDL. Beside the visualization of the water distribution a characterization of the employed materials is feasible.
引用
收藏
页码:712 / 717
页数:5
相关论文
共 19 条
[1]  
Manke I., Hartnig Ch., Grunerbel M., Kaczerowski J., Lehnert W., Kardjilov N., Hilger A., Treimer W., Strobl M., Banhart J., Quasi-in situ neutron tomography on polymer electrolyte membrane fuel cell stacks, Applied Physics Letters, 90, (2007)
[2]  
Hussey D.S., Jacobson D.L., Arif M., Coakley K.J., Vecchia D.F., In situ fuel cell water metrology at the NIST neutron imaging facility, Journal of Fuel Cell Science and Technology, 7, (2010)
[3]  
Satija R., Jacobson D.L., Arif M., Werner S.A., In situ neutron imaging technique for evaluation of water management systems in operating PEM fuel cells, Journal of Power Sources, 129, pp. 238-245, (2004)
[4]  
Turhan A., Heller K., Brenizer J.S., Mench M.M., Quantification of liquid water accumulation and distribution in a polymer electrolyte fuel cell using neutron imaging, Journal of Power Sources, 160, pp. 1195-1203, (2006)
[5]  
Geiger A.B., Tsukada A., Lehmann E., Vontobel P., Wokaun A., Scherer G.G., In situ investigation of two-phase flow patterns in flow fields of PEFCs using neutron radiography, Fuel Cells, 2, pp. 92-98, (2002)
[6]  
Hartnlg Ch., Manke I., Kardjilov N., Hilger A., Grunerbel M., Kaczerowskl J., Banhart J., Lehnert W., Combined neutron radiography and locally resolved current density measurements of operating PEM fuel cells, Journal of Power Sources, 176, pp. 452-459, (2008)
[7]  
Manke I., Hartnig Ch., Kardjilov N., Messerschmidt M., Hilger A., Strobl M., Lehnert W., Banhart J., Characterization of water exchange and two-phase flow in porous gas diffusion materials by hydrogen-deuterium contrast neutron radiography, Applied Physics Letters, 92, (2008)
[8]  
Manke I., Hartnig Ch., Kardjilov N., Hilger A., Lange A., Kupsch A., Banhart J., Wasserverteilung in PEM-Brennstoffzellen in-situ-Untersuchung mit Neutronenradiographie und -tomographie, MP Materials Testing, 51, 4, pp. 219-226, (2009)
[9]  
Boillat P., Kramer D., Seyfang B.C., Frei G., Lehmann E., Scherer G.G., Wokaun A., Ichikawa Y., Tasaki Y., Shinohara K., In situ observation of the water distribution across a PEFC using high resolution neutron radiography, Electrochemical Communications, 10, (2008)
[10]  
Weber A.Z., Hickner M.A., Modeling and high-resolution-imaging studies of watercontent profiles in a polymer-electrolytefuel-cell membrane-electrode assembly, Electrochimica Acta, 53, pp. 7668-7674, (2008)