Fast spatial Gaussian process maximum likelihood estimation via skeletonization factorizations

被引:6
作者
Minden V. [1 ]
Damle A. [2 ]
Ho K.L. [3 ]
Ying L. [1 ,4 ]
机构
[1] Institute for Computational and Mathematical Engineering, Stanford University, Stanford, 94305, CA
[2] Department of Computer Science, Cornell University, Ithaca, 14850, NY
[3] TSMC Technology Inc., San Jose, 95134, CA
[4] Department of Mathematics, Institute for Computational and Mathematical Engineering, Stanford University, Stanford, 94305, CA
来源
| 1600年 / Society for Industrial and Applied Mathematics Publications卷 / 15期
基金
美国国家科学基金会;
关键词
Fast algorithms; Hierarchical matrices; Kriging; Maximum likelihood estimation; Spatial Gaussian processes;
D O I
10.1137/17M1116477
中图分类号
学科分类号
摘要
Maximum likelihood estimation for parameter fitting given observations from a Gaussian process in space is a computationally demanding task that restricts the use of such methods to moderately sized datasets. We present a framework for unstructured observations in two spatial dimensions that allows for evaluation of the log-likelihood and its gradient (i.e., the score equations) in Õ(n3/2) time under certain assumptions, where n is the number of observations. Our method relies on the skeletonization procedure described by Martinsson and Rokhlin [J. Cornput. Phys., 205 (2005), pp. 1-23] in the form of the recursive skeletonization factorization of Ho and Ying [Cornrn. Pure Appl. Math., 69 (2015), pp. 1415-1451]. Combining this with an adaptation of the matrix peeling algorithm of Lin, Lu, and Ying [J. Cornput. Phys., 230 (2011), pp, 4071-4087] for constructing ℋ-matrix representations of black-box operators, we obtain a framework that can be used in the context of any first-order optimization routine to quickly and accurately compute maximum likelihood estimates. © 2017 Society for Industrial and Applied Mathematics.
引用
收藏
页码:1584 / 1611
页数:27
相关论文
共 50 条
  • [1] Maximum Likelihood Estimation in Gaussian Process Regression is Ill-Posed
    Karvonen, Toni
    Oates, Chris J.
    JOURNAL OF MACHINE LEARNING RESEARCH, 2023, 24
  • [2] Numerical Issues in Maximum Likelihood Parameter Estimation for Gaussian Process Interpolation
    Basak, Subhasish
    Petit, Sebastien
    Bect, Julien
    Vazquez, Emmanuel
    MACHINE LEARNING, OPTIMIZATION, AND DATA SCIENCE (LOD 2021), PT II, 2022, 13164 : 116 - 131
  • [3] GEOMETRY OF MAXIMUM LIKELIHOOD ESTIMATION IN GAUSSIAN GRAPHICAL MODELS
    Uhler, Caroline
    ANNALS OF STATISTICS, 2012, 40 (01) : 238 - 261
  • [4] Maximum Likelihood Estimation of Spatial Covariance Parameters
    Eulogio Pardo-Igúzquiza
    Mathematical Geology, 1998, 30 : 95 - 108
  • [5] Maximum likelihood estimation of spatial covariance parameters
    Pardo-Iguzquiza, E
    MATHEMATICAL GEOLOGY, 1998, 30 (01): : 95 - 108
  • [6] Fast maximum likelihood estimation of very large spatial autoregressive models: a characteristic polynomial approach
    Smirnov, O
    Anselin, L
    COMPUTATIONAL STATISTICS & DATA ANALYSIS, 2001, 35 (03) : 301 - 319
  • [7] A frequency domain algorithm for maximum likelihood estimation of Gaussian fields
    Butler, NA
    JOURNAL OF STATISTICAL COMPUTATION AND SIMULATION, 1999, 64 (02) : 151 - 165
  • [8] Fast maximum likelihood estimation for general hierarchical models
    Hong, Johnny
    Stoudt, Sara
    de Valpine, Perry
    JOURNAL OF APPLIED STATISTICS, 2025, 52 (03) : 595 - 623
  • [9] Compressive Estimation of a Spatial Gaussian Process
    Malmirchegini, Mehrzad
    2013 IEEE MILITARY COMMUNICATIONS CONFERENCE (MILCOM 2013), 2013, : 1610 - 1615
  • [10] Maximum likelihood estimation of Gaussian mixture models using stochastic search
    Ari, Caglar
    Aksoy, Selim
    Arikan, Orhan
    PATTERN RECOGNITION, 2012, 45 (07) : 2804 - 2816