A Clay-Based Quasi-Solid-State electrolyte with high cation selective channels for High-Performance aqueous Zinc-Ion batteries

被引:0
|
作者
Wang, Haiyan [1 ,2 ]
Zhang, Zhuo [1 ,2 ]
Li, Ye [1 ,2 ]
Zhang, Feifei [3 ]
Yang, Kuo [1 ,2 ]
Xue, Bing [1 ,2 ]
机构
[1] Minist Educ, Key Lab Automobile Mat, Changchun 130022, Peoples R China
[2] Jilin Univ, Dept Mat Sci & Engn, Changchun 130022, Peoples R China
[3] Yantai Econ & Technol Open Econ Zone Market Superv, Yantai 264006, Peoples R China
基金
中国国家自然科学基金;
关键词
Kaolinite; Dimethyl sulfoxide; Quasi-solid-state electrolyte; Aqueous zinc-ion batteries; KAOLINITE; INTERCALATION; DIMETHYLSULFOXIDE;
D O I
10.1016/j.cej.2024.156514
中图分类号
X [环境科学、安全科学];
学科分类号
08 ; 0830 ;
摘要
A clay-based quasi-solid-state electrolyte was prepared using dimethyl sulfoxide (DMSO) intercalated kaolinite as the raw material to suppress the adverse effects of free water molecules on aqueous zinc-ion batteries (AZIBs). Based on the inherent water absorption and retention properties of clay kaolinite, as well as the interlayer modification, this clay-based quasi-solid-state electrolyte not only achieved a low water content but also exhibited a strong water binding effect, which restricted the HER and side reactions involving water participation. Furthermore, the intercalation of DMSO increased the number of negative charges on the surface of kaolinite, resulting in the formation of a continuous spatial electrostatic field area around the kaolinite particles, which played a role in cation selectivity. The ionic transference number of the quasi-solid-state electrolyte reached 0.91. Additionally, the intercalation of DMSO broadened the interlayer ionic transport channels of kaolinite, further enhancing the transport efficiency of Zn2+ in the quasi-solid-state electrolyte, achieving uniform deposition of Zn2+ on the surface of the Zn anode, and suppressing dendrite growth to maintain a stable quasi-solid-state electrolyte/Zn anode interface. Zn||MnO2 battery assembled with this electrolyte demonstrated a discharge specific capacity of 301 mAh/g at a current density of 60 mA g- 1. The Zn||MnO2 battery could be stably cycled for 1000 cycles at a current density of 150 mA g- 1, and after 1000 cycles, the battery still maintained a discharge specific capacity of 248.2 mAh/g with a capacity retention rate of 84.8 %, showing excellent capacity performance and cycle stability. The Zn||MnO2 pouch battery could still provide stable power under heavy pressure, bending, and continuous tapping and had the potential for use in flexible batteries.
引用
收藏
页数:14
相关论文
共 50 条
  • [21] Advances in application of sustainable lignocellulosic materials for high-performance aqueous zinc-ion batteries
    Huang, Yi
    Liu, Wei
    Lin, Chenxiao
    Hou, Qingxi
    Nie, Shuangxi
    NANO ENERGY, 2024, 123
  • [22] Strategies of structural and defect engineering for high-performance rechargeable aqueous zinc-ion batteries
    Du, Min
    Miao, Zhenyu
    Li, Houzhen
    Sang, Yuanhua
    Liu, Hong
    Wang, Shuhua
    JOURNAL OF MATERIALS CHEMISTRY A, 2021, 9 (35) : 19245 - 19281
  • [23] Reversible Deposition/Dissolution of Double Hydroxides to Modulate Electrolyte pH Enabling High-Performance Aqueous Zinc-Ion Batteries
    Jin, Yueang
    Zhang, Xueqian
    Zhu, Yongchun
    Ye, Jiajia
    Qian, Yitai
    Hou, Zhiguo
    ACS APPLIED MATERIALS & INTERFACES, 2024, 16 (22) : 28391 - 28401
  • [24] Multiple Regulation of Electrolyte with Trace Amounts of Sodium Dehydroacetate Additives Enables High-Performance Aqueous Zinc-Ion Batteries
    Li, Lubo
    Liu, Zeqi
    Dai, Geliang
    Xia, Yong
    Xu, Lijian
    Sun, Aokui
    Du, Jingjing
    SMALL, 2025,
  • [25] Electrochemical Activation in Vanadium Oxide with Rich Oxygen Vacancies for High-Performance Aqueous Zinc-Ion Batteries
    Liang, Fangan
    Chen, Min
    Zhang, Shuchao
    Zou, Zhengguang
    Ge, Chuanqi
    Jia, Shengkun
    Le, Shangwang
    Yu, Fagang
    Nong, Jinxia
    ACS SUSTAINABLE CHEMISTRY & ENGINEERING, 2024, 12 (13) : 5117 - 5128
  • [26] Mn-containing heteropolyvanadate nanoparticles as a high-performance cathode material for aqueous zinc-ion batteries
    Xiao, Haoran
    Li, Rong
    Zhu, Limin
    Chen, Xizhuo
    Xie, Lingling
    Han, Qing
    Qiu, Xuejing
    Yi, Lanhua
    Cao, Xiaoyu
    JOURNAL OF ENERGY STORAGE, 2024, 89
  • [27] Building fast and selective Zn ion channels for highly stable quasi-solid-state Zn-ion batteries
    Kao, Chun-Chuan
    Liu, Jiahao
    Ye, Chao
    Zhang, Shao-Jian
    Hao, Junnan
    Qiao, Shi-Zhang
    JOURNAL OF MATERIALS CHEMISTRY A, 2023, 11 (44) : 23881 - 23887
  • [28] Electroactivation-induced hydrated zinc vanadate as cathode for high-performance aqueous zinc-ion batteries
    Luo, Ping
    Zhang, Wenwei
    Wang, Shiyu
    Liu, Gangyuan
    Xiao, Yao
    Zuo, Chunli
    Tang, Wen
    Fu, Xudong
    Dong, Shijie
    JOURNAL OF ALLOYS AND COMPOUNDS, 2021, 884
  • [29] A high-performance rechargeable Li-O2 battery with quasi-solid-state electrolyte
    Peng, Jia-Yue
    Huang, Jie
    Li, Wen-Jun
    Wang, Yi
    Yu, Xiqian
    Hu, Yongsheng
    Chen, Liquan
    Li, Hong
    CHINESE PHYSICS B, 2018, 27 (07)
  • [30] A high-performance rechargeable Li–O2 battery with quasi-solid-state electrolyte
    彭佳悦
    黄杰
    李文俊
    王怡
    禹习谦
    胡勇胜
    陈立泉
    李泓
    Chinese Physics B, 2018, (07) : 561 - 565