共 56 条
- [1] Li Y., Wu F.-X., Ngom A., A review on machine learning principles for multi-view biological data integration, Brief. Bioinform., 19, 2, pp. 325-340, (2018)
- [2] Rigden D.J., Fernandez-Suarez X.M., Galperin M.Y., The 2016 database issue of nucleic acids research and an updated molecular biology database collection, Nucl. Acids Res., 44, D1, pp. D1-D6, (2016)
- [3] Sompairac N., Nazarov P.V., Czerwinska U., Cantini L., Biton A., Molkenov A., Zhumadilov Z., Barillot E., Radvanyi F., Gorban A., Kairov U., Zinovyev A., Independent component analysis for unraveling the complexity of cancer omics datasets, Int. J. Mol. Sci., 20, 18, (2019)
- [4] Karczewski K.J., Snyder M.P., Integrative omics for health and disease, Nature Rev. Genet., 19, 5, pp. 299-310, (2018)
- [5] Subramanian I., Verma S., Kumar S., Jere A., Anamika K., Multi-omics data integration, interpretation, and its application, Bioinform. Biol. Insights, 14, (2020)
- [6] Chaudhary K., Poirion O.B., Lu L., Garmire L.X., Deep learning–based multi-omics integration robustly predicts survival in liver CancerUsing deep learning to predict liver cancer prognosis, Clin. Cancer Res., 24, 6, pp. 1248-1259, (2018)
- [7] Tan K., Huang W., Hu J., Dong S., A multi-omics supervised autoencoder for pan-cancer clinical outcome endpoints prediction, BMC Med. Inform. Decis. Mak., 20, pp. 1-9, (2020)
- [8] Zhang C., Chen Y., Zeng T., Zhang C., Chen L., Deep latent space fusion for adaptive representation of heterogeneous multi-omics data, Brief. Bioinform., 23, 2, (2022)
- [9] Kang M., Ko E., Mersha T.B., A roadmap for multi-omics data integration using deep learning, Brief. Bioinform., 23, 1, (2022)
- [10] Gligorijevic V., Barot M., Bonneau R., deepNF: deep network fusion for protein function prediction, Bioinformatics, 34, 22, pp. 3873-3881, (2018)