Daily estimation of NO2 concentrations using digital tachograph data

被引:0
作者
Joo, Yoohyung [1 ]
Joo, Minsoo [1 ]
Nguyen, Minh Hieu [1 ]
Hong, Jiwan [1 ]
Kim, Changsoo [2 ]
Wong, Man Sing [3 ]
Heo, Joon [1 ]
机构
[1] Yonsei Univ, Dept Civil & Environm Engn, 50 Yonsei Ro, Seoul 03722, South Korea
[2] Yonsei Univ, Coll Med, Dept Prevent Med, Seoul, South Korea
[3] Hong Kong Polytech Univ, Dept Land Surveying & Geoinfomat, Hong Kong, Peoples R China
基金
新加坡国家研究基金会;
关键词
NO2; concentrations; DTG data; Daily estimation; Land use regression (LUR); Spatial-temporal variation; LAND-USE REGRESSION; AIR-POLLUTION CONCENTRATIONS; AMBIENT NITROGEN-DIOXIDE; INTRAURBAN VARIABILITY; SPATIAL VARIABILITY; TRAFFIC POLLUTION; SULFUR-DIOXIDE; MODELS; EMISSIONS; EXPOSURE;
D O I
10.1007/s10661-024-13190-0
中图分类号
X [环境科学、安全科学];
学科分类号
08 ; 0830 ;
摘要
Traffic information is crucial for estimating NO2 concentrations, but it is static and limited in predicting constantly changing NO2 levels. To overcome these challenges, this study utilized real-time spatial big data to capture both the spatial and temporal fluctuations in traffic. Digital tachograph (DTG) data, sourced from digital devices in all commercial vehicles, are employed to construct a DTG land use regression (LUR) model, and its performance is compared with that of a non-DTG-LUR model. The DTG-LUR model exhibits superior performance, with an explanatory power of 0.46, in contrast to the 0.36 of the non-DTG model. This significant improvement stems from the spatially and temporally dynamic DTG variables such as cargo traffic. This study introduces a novel approach for incorporating DTG data in correlating with NO2 concentrations. It underscores the advantage of DTG data in predicting daily NO2 fluctuations at a precise 200-m grid, which is not feasible with conventional data. The findings of the study highlight the immense potential of spatial big data for fine-grained analyses, which could enable hourly predictions of air pollution.
引用
收藏
页数:25
相关论文
共 98 条
[1]   Global, national, and urban burdens of paediatric asthma incidence attributable to ambient NO2 pollution: estimates from global datasets [J].
Achakulwisut, Pattanun ;
Brauer, Michael ;
Hystad, Perry ;
Anenberg, Susan C. .
LANCET PLANETARY HEALTH, 2019, 3 (04) :E166-E178
[2]   Urban form and air pollution: Clustering patterns of urban form factors related to particulate matter in Seoul, Korea [J].
Ahn, Haesung ;
Lee, Jeongwoo ;
Hong, Andy .
SUSTAINABLE CITIES AND SOCIETY, 2022, 81
[3]   Land use regression models to estimate the annual and seasonal spatial variability of sulfur dioxide and particulate matter in Tehran, Iran [J].
Amini, Hassan ;
Taghavi-Shahri, Seyed Mahmood ;
Henderson, Sarah B. ;
Naddafi, Kazem ;
Nabizadeh, Ramin ;
Yunesian, Masud .
SCIENCE OF THE TOTAL ENVIRONMENT, 2014, 488 :343-353
[4]   The use of wind fields in a land use regression model to predict air pollution concentrations for health exposure studies [J].
Arain, M. A. ;
Blair, R. ;
Finkelstein, N. ;
Brook, J. R. ;
Sahsuvaroglu, T. ;
Beckerman, B. ;
Zhang, L. ;
Jerrett, M. .
ATMOSPHERIC ENVIRONMENT, 2007, 41 (16) :3453-3464
[5]   Comparison of two kriging interpolation methods applied to spatiotemporal rainfall [J].
Bargaoui, Zoubeida Kebaili ;
Chebbi, Afef .
JOURNAL OF HYDROLOGY, 2009, 365 (1-2) :56-73
[6]   Estimated long-term outdoor air pollution concentrations in a cohort study [J].
Beelen, Rob ;
Hoek, Gerard ;
Fischer, Paul ;
van den Brandt, Piet A. ;
Brunekreef, Bert .
ATMOSPHERIC ENVIRONMENT, 2007, 41 (07) :1343-1358
[7]   Development of NO2 and NOx land use regression models for estimating air pollution exposure in 36 study areas in Europe - The ESCAPE project [J].
Beelen, Rob ;
Hoek, Gerard ;
Vienneau, Danielle ;
Eeftens, Marloes ;
Dimakopoulou, Konstantina ;
Pedeli, Xanthi ;
Tsai, Ming-Yi ;
Kunzli, Nino ;
Schikowski, Tamara ;
Marcon, Alessandro ;
Eriksen, Kirsten T. ;
Raaschou-Nielsen, Ole ;
Stephanou, Euripides ;
Patelarou, Evridiki ;
Lanki, Timo ;
Yli-Tuomi, Tarja ;
Declercq, Christophe ;
Falq, Gregoire ;
Stempfelet, Morgane ;
Birk, Matthias ;
Cyrys, Josef ;
von Klot, Stephanie ;
Nador, Gizella ;
Varro, Mihaly Janos ;
Dedele, Audrius ;
Grazuleviciene, Regina ;
Moelter, Anna ;
Lindley, Sarah ;
Madsen, Christian ;
Cesaroni, Giulia ;
Ranzi, Andrea ;
Badaloni, Chiara ;
Hoffmann, Barbara ;
Nonnemacher, Michael ;
Kraemer, Ursula ;
Kuhlbusch, Thomas ;
Cirach, Marta ;
de Nazelle, Audrey ;
Nieuwenhuijsen, Mark ;
Bellander, Tom ;
Korek, Michal ;
Olsson, David ;
Stromgren, Magnus ;
Dons, Evi ;
Jerrett, Michael ;
Fischer, Paul ;
Wang, Meng ;
Brunekreef, Bert ;
de Hoogh, Kees .
ATMOSPHERIC ENVIRONMENT, 2013, 72 :10-23
[8]   Comparison of the performances of land use regression modelling and dispersion modelling in estimating small-scale variations in long-term air pollution concentrations in a Dutch urban area [J].
Beelen, Rob ;
Voogt, Marita ;
Duyzer, Jan ;
Zandveld, Peter ;
Hoek, Gerard .
ATMOSPHERIC ENVIRONMENT, 2010, 44 (36) :4614-4621
[9]   Accounting for spatial effects in land use regression for urban air pollution modeling [J].
Bertazzon, Stefania ;
Johnson, Markey ;
Eccles, Kristin ;
Kaplan, Gilaad G. .
SPATIAL AND SPATIO-TEMPORAL EPIDEMIOLOGY, 2015, 14-15 :9-21
[10]   A regression-based method for mapping traffic-related air pollution: application and testing in four contrasting urban environments [J].
Briggs, DJ ;
de Hoogh, C ;
Guiliver, J ;
Wills, J ;
Elliott, P ;
Kingham, S ;
Smallbone, K .
SCIENCE OF THE TOTAL ENVIRONMENT, 2000, 253 (1-3) :151-167