In situ fabrication of low-crystallinity (Ni,Fe)xSy nanosheet arrays via room-temperature corrosion engineering toward efficient oxygen evolution

被引:5
作者
Chen, Mingyue [1 ]
Li, Wenhui [1 ]
Lu, Yu [1 ]
Qi, Pengcheng [1 ]
Wu, Hao [1 ]
Hao, Kunyu [1 ]
Tang, Yiwen [1 ]
机构
[1] Cent China Normal Univ, Coll Phys Sci & Technol, Inst Nanosci & Technol, Wuhan 430079, Peoples R China
来源
APPLIED CATALYSIS B-ENVIRONMENT AND ENERGY | 2024年 / 358卷
基金
中国国家自然科学基金;
关键词
Corrosion engineering; Ni-Fe sulfides; Water oxidation; Synergistic effects; Lattice oxygen mechanism; SULFIDE; GROWTH;
D O I
10.1016/j.apcatb.2024.124415
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
The field of room-temperature corrosion engineering has emerged as a promising avenue for the controlled synthesis of functional nano-materials, owing to its simplicity and potential for scalability. To date, room temperature corrosion engineering has been skillfully applied and successfully used to synthesizee transition metal (oxy)hydroxides. However, the synthesis of transition metal sulfides via room-temperature corrosion encounters challenges due to the low standard electrode potential and sluggish corrosion kinetics of S/S-n(2-). Here, we have successfully initiated the oxidation behavior of S-2(2)- on Ni3Fe7 foam by adjusting the pH of the aqueous solution (containing (NH4)(2)SO4 and Na2S2), and subsequently synthesized low-crystallinity (Ni,Fe)(x)S-y nanosheet arrays with significant lattice distortion and amorphous characteristics. Experimental studies combined with theoretical calculations have confirmed Fe within the (Ni,Fe)(x)S-y structure functions as a highly active site while simultaneously expediting the lattice oxygen mechanism, thus yielding a remarkably efficient OER performance.
引用
收藏
页数:13
相关论文
共 61 条
[11]   Nanoarchitectonics for Transition-Metal-Sulfide-Based Electrocatalysts for Water Splitting [J].
Guo, Yanna ;
Park, Teahoon ;
Yi, Jin Woo ;
Henzie, Joel ;
Kim, Jeonghun ;
Wang, Zhongli ;
Jiang, Bo ;
Bando, Yoshio ;
Sugahara, Yoshiyuki ;
Tang, Jing ;
Yamauchi, Yusuke .
ADVANCED MATERIALS, 2019, 31 (17)
[12]   Real-Time Mimicking the Electronic Structure of N-Coordinated Ni Single Atoms: NiS-Enabled Electrochemical Reduction of CO2 to CO [J].
Han, Man Ho ;
Kim, Dongjin ;
Kim, Sangkuk ;
Yu, Seung-Ho ;
Won, Da Hye ;
Min, Byoung Koun ;
Chae, Keun Hwa ;
Lee, Woong Hee ;
Oh, Hyung-Suk .
ADVANCED ENERGY MATERIALS, 2022, 12 (35)
[13]   Promoted self-construction of β-NiOOH in amorphous high entropy electrocatalysts for the oxygen evolution reaction [J].
Han, Mei ;
Wang, Changhong ;
Zhong, Jun ;
Han, Jingrui ;
Wang, Ning ;
Seifitokaldani, Ali ;
Yu, Yifu ;
Liu, Yongchang ;
Sun, Xuhui ;
Vomiero, Alberto ;
Liang, Hongyan .
APPLIED CATALYSIS B-ENVIRONMENT AND ENERGY, 2022, 301
[14]   Activating lattice oxygen in NiFe-based (oxy)hydroxide for water electrolysis [J].
He, Zuyun ;
Zhang, Jun ;
Gong, Zhiheng ;
Lei, Hang ;
Zhou, Deng ;
Zhang, Nian ;
Mai, Wenjie ;
Zhao, Shijun ;
Chen, Yan .
NATURE COMMUNICATIONS, 2022, 13 (01)
[15]   Identification of Key Reversible Intermediates in Self-Reconstructed Nickel-Based Hybrid Electrocatalysts for Oxygen Evolution [J].
Huang, Jianwen ;
Li, Yaoyao ;
Zhang, Yadong ;
Rao, Gaofeng ;
Wu, Chunyang ;
Hu, Yin ;
Wang, Xianfu ;
Lu, Ruifeng ;
Li, Yanrong ;
Xiong, Jie .
ANGEWANDTE CHEMIE-INTERNATIONAL EDITION, 2019, 58 (48) :17458-17464
[16]   The Underlying Molecular Mechanism of Fence Engineering to Break the Activity-Stability Trade-Off in Catalysts for the Hydrogen Evolution Reaction [J].
Huang, Jingbin ;
Hao, Mengyao ;
Mao, Baoguang ;
Zheng, Lirong ;
Zhu, Jie ;
Cao, Minhua .
ANGEWANDTE CHEMIE-INTERNATIONAL EDITION, 2022, 61 (10)
[17]   Chemical and structural origin of lattice oxygen oxidation in Co-Zn oxyhydroxide oxygen evolution electrocatalysts [J].
Huang, Zhen-Feng ;
Song, Jiajia ;
Du, Yonghua ;
Xi, Shibo ;
Dou, Shuo ;
Nsanzimana, Jean Marie Vianney ;
Wang, Cheng ;
Xu, Zhichuan J. ;
Wang, Xin .
NATURE ENERGY, 2019, 4 (04) :329-338
[18]   Bubble growth and departure modes on wettable/non-wettable porous foams in alkaline water splitting [J].
Iwata, Ryuichi ;
Zhang, Lenan ;
Wilke, Kyle L. ;
Gong, Shuai ;
He, Mingfu ;
Gallant, Betar M. ;
Wang, Evelyn N. .
JOULE, 2021, 5 (04) :887-900
[19]   Nickel-doped pyrrhotite iron sulfide nanosheets as a highly efficient electrocatalyst for water splitting [J].
Jing, Zhongxin ;
Zhao, Qingyun ;
Zheng, Dehua ;
Sun, Lei ;
Geng, Jiahui ;
Zhou, Qiannan ;
Lin, Jianjian .
JOURNAL OF MATERIALS CHEMISTRY A, 2020, 8 (39) :20323-20330
[20]   In situ Raman spectroscopic study towards the growth and excellent HER catalysis of Ni/Ni(OH)2 heterostructure [J].
Lai, Wei ;
Ge, Lihong ;
Li, Huaming ;
Deng, Yilin ;
Xu, Bin ;
Ouyang, Bo ;
Kan, Erjun .
INTERNATIONAL JOURNAL OF HYDROGEN ENERGY, 2021, 46 (53) :26861-26872