Electrochemical oxidation and ozonation applied to the treatment of wastewaters from biodiesel production

被引:7
作者
Oxidación electroquímica y ozonización aplicadas al tratamiento de aguas de lavado de la producción de biodiesel
机构
[1] Grupo Procesos Fisicoquímicos Aplicados, Universidad de Antioquia, Medellín, Ciudad Universitaria
来源
Patiño, K.V. | 1600年 / Centro de Informacion Tecnologica卷 / 23期
关键词
Biodiesel; Decontamination; Electrochemical oxidation; Ozonation; Wastewater;
D O I
10.4067/S0718-07642012000200006
中图分类号
学科分类号
摘要
Non-photochemical advanced oxidation technologies, ozonation and electrochemical oxidation, as alternative technologies to treat wastewaters from biodiesel production were applied. The physicochemical characterization of the wastewaters showed high levels in biochemical and chemical oxygen demand, total organic carbon and residual methanol. Both technologies increased the wastewater biodegradability and showed similar efficiencies in the reduction of the organic loads, with chemical oxygen demand removal between 5 and 9 % and total organic carbon removal between 9 and 11 %. However the ozonation showed to be a more versatile technology to be implemented on a larger scale as a system for treatment alone or coupled to biological processes that are typically used in treating waters with high organic load.
引用
收藏
页码:41 / 52
页数:11
相关论文
共 20 条
  • [1] Beltran F., Ozone Reaction Kinetics for Water and Wastewater Systems, pp. 1-358, (2004)
  • [2] Berrios M., Skelton R.L., Comparison of purification methods for biodiesel, Chemical Engineering Journal, 144, 3, pp. 459-465, (2008)
  • [3] Brillas E., Sires I., Arias C., Cabot P.L., Centellas F., Rodriguez R.M., Garrido J.A., Mineralization of paracetamol in aqueous medium by anodic oxidation with a boron-doped diamond electrode, Chemosphere, 58, 4, pp. 399-406, (2005)
  • [4] Canizares P., Et al., A comparison between Conductive-Diamond Electrochemical Oxidation and other Advanced Oxidation Processes for the treatment of synthetic melanoidins, Journal of Hazardous Materials, 164, 1, pp. 120-125, (2009)
  • [5] Chen G., Electrochemical technologies in wastewater treatment, Separation and Purification Technology, 38, 1, pp. 11-41, (2004)
  • [6] Domenech X., Jardim W.F., Litter M.I., Procesos avanzados de oxidación para la eliminación de contaminantes, Eliminación de Contaminantes Por Fotocatálisis Heterogénea, pp. 3-26, (2004)
  • [7] Esplugas S., Gimenez J., Contreras S., Pascual E., Rodriguez M., Comparison of different advanced oxidation processes for phenol degradation, Water Research, 36, 4, pp. 1034-1042, (2002)
  • [8] Guillard C., Puzenat E., Lachheb H., Houas A., Herrmann J.-M., Why inorganic salts decrease the TiO <sub>2</sub> photocatalytic efficiency, International Journal of Photoenergy, 7, 1, pp. 1-9, (2005)
  • [9] Guinea E., Et al., Oxidation of enrofloxacin with conductive-diamond electrochemical oxidation, ozonation and Fenton oxidation. A comparison, Water Research, 43, 8, pp. 2131-2138, (2009)
  • [10] Habib Z., Parthasarathy R., Gollahalli S., Performance and emission characteristics of biofuel in a small-scale gas turbine engine, Applied Energy, 87, 5, pp. 1701-1709, (2010)