Stable Variable Selection for High-Dimensional Genomic Data with Strong Correlations

被引:0
|
作者
Sarkar R. [1 ]
Manage S. [2 ]
Gao X. [3 ]
机构
[1] Department of Mathematics and Statistics, University of North Carolina at Greensboro, PO Box 26170, 116 Petty Building, Greensboro, 27402, NC
[2] Department of Mathematics, Texas A&M University, Blocker Building, 3368 TAMU, 155 Ireland Street, College Station, 77840, TX
[3] Meta Platforms, Menlo Park, CA
基金
美国国家科学基金会;
关键词
Bi-level sparsity; Minimax concave penalty; Stability; Strong correlation; Variable selection;
D O I
10.1007/s40745-023-00481-5
中图分类号
学科分类号
摘要
High-dimensional genomic data studies are often found to exhibit strong correlations, which results in instability and inconsistency in the estimates obtained using commonly used regularization approaches including the Lasso and MCP, etc. In this paper, we perform comparative study of regularization approaches for variable selection under different correlation structures and propose a two-stage procedure named rPGBS to address the issue of stable variable selection in various strong correlation settings. This approach involves repeatedly running a two-stage hierarchical approach consisting of a random pseudo-group clustering and bi-level variable selection. Extensive simulation studies and high-dimensional genomic data analysis on real datasets have demonstrated the advantage of the proposed rPGBS method over some of the most used regularization methods. In particular, rPGBS results in more stable selection of variables across a variety of correlation settings, as compared to some recent methods addressing variable selection with strong correlations: Precision Lasso (Wang et al. in Bioinformatics 35:1181–1187, 2019) and Whitening Lasso (Zhu et al. in Bioinformatics 37:2238–2244, 2021). Moreover, rPGBS has been shown to be computationally efficient across various settings. © The Author(s), under exclusive licence to Springer-Verlag GmbH Germany, part of Springer Nature 2023.
引用
收藏
页码:1139 / 1164
页数:25
相关论文
共 50 条
  • [1] Variable selection for high-dimensional incomplete data
    Liang, Lixing
    Zhuang, Yipeng
    Yu, Philip L. H.
    COMPUTATIONAL STATISTICS & DATA ANALYSIS, 2024, 192
  • [2] VARIABLE SELECTION AND PREDICTION WITH INCOMPLETE HIGH-DIMENSIONAL DATA
    Liu, Ying
    Wang, Yuanjia
    Feng, Yang
    Wall, Melanie M.
    ANNALS OF APPLIED STATISTICS, 2016, 10 (01) : 418 - 450
  • [3] A Variable Selection Method for High-Dimensional Survival Data
    Giordano, Francesco
    Milito, Sara
    Restaino, Marialuisa
    MATHEMATICAL AND STATISTICAL METHODS FOR ACTUARIAL SCIENCES AND FINANCE, MAF 2022, 2022, : 303 - 308
  • [4] Exploiting the ensemble paradigm for stable feature selection: A case study on high-dimensional genomic data
    Pes, Barbara
    Dessi, Nicoletta
    Angioni, Marta
    INFORMATION FUSION, 2017, 35 : 132 - 147
  • [5] Stochastic variational variable selection for high-dimensional microbiome data
    Dang, Tung
    Kumaishi, Kie
    Usui, Erika
    Kobori, Shungo
    Sato, Takumi
    Toda, Yusuke
    Yamasaki, Yuji
    Tsujimoto, Hisashi
    Ichihashi, Yasunori
    Iwata, Hiroyoshi
    MICROBIOME, 2022, 10 (01)
  • [6] Variable selection for longitudinal data with high-dimensional covariates and dropouts
    Zheng, Xueying
    Fu, Bo
    Zhang, Jiajia
    Qin, Guoyou
    JOURNAL OF STATISTICAL COMPUTATION AND SIMULATION, 2018, 88 (04) : 712 - 725
  • [7] Stochastic variational variable selection for high-dimensional microbiome data
    Tung Dang
    Kie Kumaishi
    Erika Usui
    Shungo Kobori
    Takumi Sato
    Yusuke Toda
    Yuji Yamasaki
    Hisashi Tsujimoto
    Yasunori Ichihashi
    Hiroyoshi Iwata
    Microbiome, 10
  • [8] Comparison of variable selection methods for high-dimensional survival data with competing events
    Gilhodes, Julia
    Zemmour, Christophe
    Ajana, Soufiane
    Martinez, Alejandra
    Delord, Jean-Pierre
    Leconte, Eve
    Boher, Jean-Marie
    Filleron, Thomas
    COMPUTERS IN BIOLOGY AND MEDICINE, 2017, 91 : 159 - 167
  • [9] Precision Lasso: accounting for correlations and linear dependencies in high-dimensional genomic data
    Wang, Haohan
    Lengerich, Benjamin J.
    Aragam, Bryon
    Xing, Eric P.
    BIOINFORMATICS, 2019, 35 (07) : 1181 - 1187
  • [10] PALLADIO: a parallel framework for robust variable selection in high-dimensional data
    Barbieri, Matteo
    Fiorini, Samuele
    Tomasi, Federico
    Barla, Annalisa
    PROCEEDINGS OF PYHPC2016: 6TH WORKSHOP ON PYTHON FOR HIGH-PERFORMANCE AND SCIENTIFIC COMPUTING, 2016, : 19 - 26