Cayley transform for Toeplitz and dual matrices

被引:0
作者
Verma, Tikesh [1 ]
Mishra, Debasisha [1 ]
Tsatsomeros, Michael [2 ]
机构
[1] Natl Inst Technol Raipur, Dept Math, Raipur, India
[2] Washington State Univ, Dept Math & Stat, Pullman, WA 99163 USA
关键词
Cayley transform; Toeplitz matrix; Dual number; Dual matrix; Nilpotent matrix; Unipotent matrix; Skew-symmetric matrix; Persymmetric matrix;
D O I
10.1016/j.laa.2024.10.007
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
Let an n x n complex matrix Abe such that I+A is invertible. The Cayley transform of A, denoted by C(A), is defined as C(A) = (I + A)-1(I -1 (I - A). Fallat and Tsatsomeros (2002) [5] and Mondal et al. (2024) [15] studied the Cayley transform of a matrix Ain the context of P-matrices, H-matrices, M-matrices, totally positive matrices, positive definite matrices, almost skew-Hermitian matrices, and semipositive matrices. In this paper, the investigation of the Cayley transform is continued for Toeplitz matrices, circulant matrices, unipotent matrices, and dual matrices. An expression of the Cayley transform for dual matrices is established. It is shown that the Cayley transform of a dual symmetric matrix is always a dual symmetric matrix. The Cayley transform of a dual skew-symmetric matrix is discussed. The results are illustrated with examples. (c) 2024 Elsevier Inc. All rights are reserved, including those for text and data mining, AI training, and similar technologies.
引用
收藏
页码:627 / 644
页数:18
相关论文
共 50 条
  • [41] Mass concentration in quasicommutators of Toeplitz matrices
    Boettcher, Albrecht
    Gutierrez-Gutierrez, Jesus
    Crespo, Pedro M.
    JOURNAL OF COMPUTATIONAL AND APPLIED MATHEMATICS, 2007, 205 (01) : 129 - 148
  • [42] GENERALIZED PASCAL TRIANGLES AND TOEPLITZ MATRICES
    Moghaddamfar, A. R.
    Pooya, S. M. H.
    ELECTRONIC JOURNAL OF LINEAR ALGEBRA, 2009, 18 : 564 - 588
  • [43] On group inverse of singular Toeplitz matrices
    Wei, YM
    Diao, H
    LINEAR ALGEBRA AND ITS APPLICATIONS, 2005, 399 : 109 - 123
  • [44] Fast algorithms for Toeplitz and Hankel matrices
    Heinig, Georg
    Rost, Karla
    LINEAR ALGEBRA AND ITS APPLICATIONS, 2011, 435 (01) : 1 - 59
  • [45] Functions generating normal Toeplitz matrices
    Zamarashkin, N. L.
    Tyrtyshnikov, E. E.
    Chugunov, V. N.
    MATHEMATICAL NOTES, 2011, 89 (3-4) : 480 - 483
  • [46] Discrete wavelet transforms for Toeplitz matrices
    Lin, FR
    Ching, WK
    Ng, MK
    LINEAR ALGEBRA AND ITS APPLICATIONS, 2003, 370 : 269 - 285
  • [47] Universal Portfolios Generated by Toeplitz Matrices
    Tan, Choon Peng
    Chu, Sin Yen
    Pan, Wei Yeing
    PROCEEDINGS OF THE 3RD INTERNATIONAL CONFERENCE ON MATHEMATICAL SCIENCES, 2014, 1602 : 1126 - 1131
  • [48] Norms of large Toeplitz band matrices
    Böttcher, A
    Grudsky, S
    Kozak, A
    Silbermann, B
    SIAM JOURNAL ON MATRIX ANALYSIS AND APPLICATIONS, 2000, 21 (02) : 547 - 561
  • [49] Toeplitz matrices with slowly growing pseudospectra
    Böttcher, A
    Grudsky, S
    FACTORIZATION, SINGULAR OPERATORS AND RELATED PROBLEMS, PROCEEDINGS, 2003, : 43 - 54
  • [50] Dissipative operator and its Cayley transform
    Ugurlu, Ekin
    Tas, Kenan
    TURKISH JOURNAL OF MATHEMATICS, 2017, 41 (06) : 1404 - 1432