Cayley transform for Toeplitz and dual matrices

被引:0
作者
Verma, Tikesh [1 ]
Mishra, Debasisha [1 ]
Tsatsomeros, Michael [2 ]
机构
[1] Natl Inst Technol Raipur, Dept Math, Raipur, India
[2] Washington State Univ, Dept Math & Stat, Pullman, WA 99163 USA
关键词
Cayley transform; Toeplitz matrix; Dual number; Dual matrix; Nilpotent matrix; Unipotent matrix; Skew-symmetric matrix; Persymmetric matrix;
D O I
10.1016/j.laa.2024.10.007
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
Let an n x n complex matrix Abe such that I+A is invertible. The Cayley transform of A, denoted by C(A), is defined as C(A) = (I + A)-1(I -1 (I - A). Fallat and Tsatsomeros (2002) [5] and Mondal et al. (2024) [15] studied the Cayley transform of a matrix Ain the context of P-matrices, H-matrices, M-matrices, totally positive matrices, positive definite matrices, almost skew-Hermitian matrices, and semipositive matrices. In this paper, the investigation of the Cayley transform is continued for Toeplitz matrices, circulant matrices, unipotent matrices, and dual matrices. An expression of the Cayley transform for dual matrices is established. It is shown that the Cayley transform of a dual symmetric matrix is always a dual symmetric matrix. The Cayley transform of a dual skew-symmetric matrix is discussed. The results are illustrated with examples. (c) 2024 Elsevier Inc. All rights are reserved, including those for text and data mining, AI training, and similar technologies.
引用
收藏
页码:627 / 644
页数:18
相关论文
共 50 条
  • [21] Toeplitz and Hankel matrices on Cn
    Yoshino, T
    INTEGRAL EQUATIONS AND OPERATOR THEORY, 2001, 41 (01) : 115 - 122
  • [22] Permutability of Toeplitz and Hankel matrices
    Chugunov, V. N.
    Ikramov, Kh. D.
    LINEAR ALGEBRA AND ITS APPLICATIONS, 2015, 467 : 226 - 242
  • [23] Infinite extensions of Toeplitz matrices
    Al’pin Y.A.
    Il’in S.N.
    Journal of Mathematical Sciences, 2005, 127 (3) : 1957 - 1961
  • [24] Orthogonal Symmetric Toeplitz Matrices
    Albrecht Böttcher
    Complex Analysis and Operator Theory, 2008, 2 : 285 - 298
  • [25] Orthogonal Symmetric Toeplitz Matrices
    Boettcher, Albrecht
    COMPLEX ANALYSIS AND OPERATOR THEORY, 2008, 2 (02) : 285 - 298
  • [26] Analysis of Toeplitz MDS Matrices
    Sarkar, Sumanta
    Syed, Habeeb
    INFORMATION SECURITY AND PRIVACY, ACISP 2017, PT II, 2017, 10343 : 3 - 18
  • [27] ASYMPTOTIC PSEUDOMODES OF TOEPLITZ MATRICES
    Boettcher, Albrecht
    Grudsky, Sergei
    Unterberger, Jeremie
    OPERATORS AND MATRICES, 2008, 2 (04): : 525 - 541
  • [28] Deconvolution and regularization with Toeplitz matrices
    Hansen, PC
    NUMERICAL ALGORITHMS, 2002, 29 (04) : 323 - 378
  • [29] Quaternionic Cayley transform revisited
    Vasilescu, F. -H.
    JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2014, 409 (02) : 790 - 807
  • [30] Toeplitz and Hankel matrices on ℂn
    Takashi Yoshino
    Integral Equations and Operator Theory, 2001, 41 : 115 - 122