Axial symmetric elastic analysis with gravity load in non-homogeneous materials by triple-reciprocity boundary element method

被引:0
作者
Department of Mechanical Engineering, Kinki University, 3-4-1 Kowakae, Higashi-Osaka-shi, Osaka, 577-8502, Japan [1 ]
机构
[1] Department of Mechanical Engineering, Kinki University, Higashi-Osaka-shi, Osaka, 577-8502
来源
Nihon Kikai Gakkai Ronbunshu, A Hen/Transactions of the Japan Society of Mechanical Engineers, Part A | 2008年 / 74卷 / 01期
关键词
Boundary element method; Elasticity; Gravity load; Non-homogeneous materials;
D O I
10.1299/kikaia.74.21
中图分类号
学科分类号
摘要
In general, internal cells are required to solve elastic problems with gravity load in non-homogeneous materials using a conventional boundary element method (BEM). However, in this case, the merit of BEM, which is ease of data preparation, is lost. In this study, it is shown that axial symmetric elastic problems with gravity load in non-homogeneous materials can be solved without the use of internal cells, using the triple-reciprocity BEM. A body force distribution is interpolated using boundary integral equations. A new computer program was developed and applied to solving several problems.
引用
收藏
页码:21 / 27
页数:6
相关论文
共 9 条
[1]  
Brebbia C.A., Et al., Boundary Element Techniques-Theory and Applications in Engineering, pp. 252-266, (1984)
[2]  
Partridge P.W., Et al., The Dual Reciprocity Boundary Element Method, pp. 223-253, (1992)
[3]  
The Multiple Reciprocity Boundary Element Method, pp. 25-43, (1994)
[4]  
Ochiai Y., Kobayashi T., Initial Strain Formulation without Internal Cells for Elastoplastic Analysis by Triple-Reciprocity BEM, International Journal for Numerical Methods in Engineering, 50, pp. 1877-1892, (2001)
[5]  
Martin M., Ein Integralgleichungsverfahren zur Lösung Rotationssymmetrischer Elastizitätsprobleme, (1975)
[6]  
Drexler W., Ein Betrag zur Lösung Rotationssymmetrischer Thermoelastischer Kerbprobleme Mitterls der Randintegralgleichungsmethode, (1981)
[7]  
Ochiai Y., Axisymmetric heat conduction analysis by improved multiple-reciprocity boundary element method, Heat Transfer-Japanese Research, 23, 6, pp. 498-512, (1995)
[8]  
Ochiai Y., Axisymmetric Numerical Integration by Boundary Element Method, Engineering Analysis with Boundary Elements, 28, 7, pp. 843-848, (2004)
[9]  
Nakasone Y., Et al., Engineering Analysis with ANSYS Software, pp. 51-106, (2007)