DIII-D research to provide solutions for ITER and fusion energy

被引:2
作者
Holcomb, C. T. [1 ]
Abbate, J. [2 ]
Abe, A. [2 ]
Abrams, A. [3 ]
Adebayo-Ige, P. [4 ]
Agabian, S. [5 ]
Ahmed, S. [6 ]
Aiba, N. [7 ]
Akcay, N. [3 ]
Akiyama, T. [3 ]
Albosta, R. [8 ]
Aleynikov, P. [9 ]
Allen, S. [1 ]
Anand, H. [3 ]
Anderson, J. [3 ]
Andrew, Y. [10 ]
Ashburn, M. [4 ]
Ashourvan, A. [3 ]
Austin, M. [11 ]
Avdeeva, G. [3 ]
Ayala, D. [3 ]
Ayub, M. [3 ]
Bagdy, E. [3 ]
Banerjee, S. [2 ]
Barada, K. [12 ]
Bardoczi, L. [3 ]
Bardsley, O. [13 ]
Barr, J. [3 ]
Bass, E. [14 ]
Battey, A. [15 ]
Bayler, Z. [16 ]
Baylor, L. [17 ]
Bechtel, T. [18 ]
Beidler, M. [17 ]
Belli, E. [3 ]
Benedett, T. [12 ]
Bergstrom, Z. [3 ]
Berkel, M. [19 ]
Bernard, T. [3 ]
Bertelli, N. [2 ]
Bielajew, R. [5 ]
Bodner, G. [3 ]
Boedo, J. [14 ]
Boivin, R. [3 ]
Bolzonella, T. [20 ]
Bonoli, P. [5 ]
Bortolon, A. [2 ]
Bose, S. [2 ]
Boyer, M. [2 ]
Boyes, W. [15 ]
机构
[1] Lawrence Livermore Natl Lab, Livermore, CA 94550 USA
[2] Princeton Plasma Phys Lab, Princeton, NJ USA
[3] Gen Atom, San Diego, CA USA
[4] Univ Tennessee, Knoxville, TN USA
[5] MIT, Boston, MA USA
[6] UiT Arctic Univ Norway, Tromso, Norway
[7] Natl Inst Quantum Sci & Technol, Naka, Ibaraki, Japan
[8] Univ Wisconsin, Madison, WI USA
[9] Max Planck Inst Plasma Phys, Garching, Germany
[10] Imperial Coll London, London, England
[11] Univ Texas Austin, Austin, TX USA
[12] Univ Calif Los Angeles, Los Angeles, CA USA
[13] United Kingdom Atom Energy Author, Abingdon, Oxon, England
[14] Univ Calif San Diego, San Diego, CA USA
[15] Columbia Univ, New York, NY USA
[16] Univ Denver, Denver, CO USA
[17] Oak Ridge Natl Lab, Oak Ridge, TN USA
[18] Oak Ridge Associated Univ, Oak Ridge, TN USA
[19] Eindhoven Univ Technol, Eindhoven, Netherlands
[20] Consorzio RFX, Padua, Italy
[21] Princeton Univ, Princeton, NJ USA
[22] Purdue Univ, W Lafayette, IN USA
[23] Brigham Young Univ, Provo, UT USA
[24] NVIDIA, Santa Clara, CA USA
[25] French Alternat Energies & Atom Energy Commiss CE, Cadarache, France
[26] Gen Atom Temp, San Diego, CA USA
[27] Coll William & Mary, Williamsburg, VA USA
[28] Carnegie Mellon Univ, Pittsburgh, PA USA
[29] Chinese Acad Sci, Inst Plasma Phys, Hefei, Peoples R China
[30] Tech X Corp, Boulder, CO USA
[31] CompX, Del Mar, CA USA
[32] Culham Ctr Fus Energy, Abingdon, Oxon, England
[33] West Virginia Univ, Morgantown, WV USA
[34] Sandia Natl Labs, Livermore, CA USA
[35] Auburn Univ, Auburn, AL USA
[36] Seoul Natl Univ, Seoul, South Korea
[37] Swiss Fed Inst Technol EPFL, Lausanne, Switzerland
[38] Standford Linear Accelerator Ctr, Norco, CA USA
[39] Commonwealth Fus Syst, Devens, MA USA
[40] Xantho Technol LLC, Madison, WI USA
[41] Univ Illinois, Urbana, IL USA
[42] Ist Fis Plasma CNR EURATOM, Milan, Italy
[43] Lawrence Berkeley Natl Lab, Berkeley, CA USA
[44] ITER Org, St Paul Les Durance, France
[45] ENS Paris Saclay, Gif Sur Yvette, France
[46] Univ Calif Irvine, Irvine, CA USA
[47] Univ Toronto, Toronto, ON, Canada
[48] Portland State Univ, Portland, OR USA
[49] Univ Michigan, Ann Arbor, MI USA
[50] Palomar Sci Instruments Inc, San Marcos, CA USA
关键词
DIII-D; tokamak; overview; TRANSPORT; CODE;
D O I
10.1088/1741-4326/ad2fe9
中图分类号
O35 [流体力学]; O53 [等离子体物理学];
学科分类号
070204 ; 080103 ; 080704 ;
摘要
The DIII-D tokamak has elucidated crucial physics and developed projectable solutions for ITER and fusion power plants in the key areas of core performance, boundary heat and particle transport, and integrated scenario operation, with closing the core-edge integration knowledge gap being the overarching mission. New experimental validation of high-fidelity, multi-channel, non-linear gyrokinetic turbulent transport models for ITER provides strong confidence it will achieve Q 10 operation. Experiments identify options for easing H-mode access in hydrogen, and give new insight into the isotopic dependence of transport and confinement. Analysis of 2,1 islands in unoptimized low-torque IBS demonstration discharges suggests their onset time occurs randomly in the constant beta phase, most often triggered by non-linear 3-wave coupling, thus identifying an NTM seeding mechanism to avoid. Pure deuterium SPI for disruption mitigation is shown to provide favorable slow cooling, but poor core assimilation, suggesting paths for improved SPI on ITER. At the boundary, measured neutral density and ionization source fluxes are strongly poloidally asymmetric, implying a 2D treatment is needed to model pedestal fuelling. Detailed measurements of pedestal and SOL quantities and impurity charge state radiation in detached divertors has validated edge fluid modelling and new self-consistent 'pedestal-to-divertor' integrated modeling that can be used to optimize reactors. New feedback adaptive ELM control minimizes confinement reduction, and RMP ELM suppression with sustained high core performance was obtained for the first time with the outer strike point in a W-coated, compact and unpumped small-angle slot divertor. Advances have been made in integrated operational scenarios for ITER and power plants. Wide pedestal intrinsically ELM-free QH-modes are produced with more reactor-relevant conditions, Low torque IBS with W-equivalent radiators can exhibit predator-prey oscillations in T-e and radiation which need control. High-beta(P) scenarios with q(min) > 2, q(95)-7.9, beta(N) > 4, beta(T)-3.3% and H-98y2 > 1.5 are sustained with high density ((n) over bar = 7E19 m(-3), f(G)-1) for 6 tau(E), improving confidence in steady-state tokamak reactors. Diverted NT plasmas achieve high core performance with a non-ELMing edge, offering a possible highly attractive core-edge integration solution for reactors.
引用
收藏
页数:18
相关论文
共 63 条
[1]   Design and physics basis for the upcoming DIII-D SAS-VW campaign to quantify tungsten leakage and transport in a new slot divertor geometry [J].
Abrams, T. ;
Sinclair, G. ;
Nichols, J. H. ;
Unterberg, E. A. ;
Donovan, D. C. ;
Duran, J. ;
Elder, J. D. ;
Glass, F. ;
Grierson, B. A. ;
Guo, H. Y. ;
Hall, T. ;
Ma, X. ;
Maurizio, R. ;
McLean, A. G. ;
Murphy, C. ;
Nguyen, R. ;
Rudakov, D. L. ;
Stangeby, P. C. ;
Thomas, D. M. ;
Zamperini, S. A. .
PHYSICA SCRIPTA, 2021, 96 (12)
[2]  
Abrams T., 2023, 2023 IAEA FUS EN C
[3]   Achievement of Reactor-Relevant Performance in Negative Triangularity Shape in the DIII-D Tokamak [J].
Austin, M. E. ;
Marinoni, A. ;
Walker, M. L. ;
Brookman, M. W. ;
deGrassie, J. S. ;
Hyatt, A. W. ;
McKee, G. R. ;
Petty, C. C. ;
Rhodes, T. L. ;
Smith, S. P. ;
Sung, C. ;
Thome, K. E. ;
Turnbull, A. D. .
PHYSICAL REVIEW LETTERS, 2019, 122 (11)
[4]  
Bardóczi L, 2021, PHYS REV LETT, V127, DOI 10.1103/PhysRevLett.127.055002
[5]  
Bardoczi L., 2023, 2023 IAEA FUS UNPUB
[6]   Wall heating by subcritical energetic electrons generated by the runaway electron avalanche source [J].
Beidler, M. T. ;
del-Castillo-Negrete, D. ;
Shiraki, D. ;
Baylor, L. R. ;
Hollmann, E. M. ;
Lasnier, C. J. .
NUCLEAR FUSION, 2024, 64 (07)
[7]   GATO - AN MHD STABILITY CODE FOR AXISYMMETRIC PLASMAS WITH INTERNAL SEPARATRICES [J].
BERNARD, LC ;
HELTON, FJ ;
MOORE, RW .
COMPUTER PHYSICS COMMUNICATIONS, 1981, 24 (3-4) :377-380
[8]   Isotope effects on energy transport in the core of ASDEX-Upgrade tokamak plasmas: Turbulence measurements and model validation [J].
Cabrera, P. A. Molina ;
Rodriguez-Fernandez, P. ;
Goerler, T. ;
Bergmann, M. ;
Hoefler, K. ;
Denk, S. S. ;
Bielajew, R. ;
Conway, G. D. ;
Yoo, C. ;
White, A. E. .
PHYSICS OF PLASMAS, 2023, 30 (08)
[9]  
Callahan K., 2023, 2023 IAEA FUS UNPUB
[10]   Impact of plasma triangularity and collisionality on electron heat transport in TCV L-mode plasmas [J].
Camenen, Y. ;
Pochelon, A. ;
Behn, R. ;
Bottino, A. ;
Bortolon, A. ;
Coda, S. ;
Karpushov, A. ;
Sauter, O. ;
Zhuang, G. .
NUCLEAR FUSION, 2007, 47 (07) :510-516