Analytical Analysis of Whole Loading Process of Ultra-High-Performance Fiber-Reinforced Concrete Beams in Flexure

被引:0
|
作者
Hao, Xin-Kai [1 ,2 ]
Jin, Chao [3 ]
Xu, Bin [1 ]
Zheng, Jian-Jun [2 ]
机构
[1] Northwestern Polytech Univ, Inst Vibrat Engn, Xian, Shaanxi, Peoples R China
[2] Zhejiang Univ Technol, Sch Civil Engn, Hangzhou, Zhejiang, Peoples R China
[3] Ningbo Jiangong Engn Grp Co China, Ningbo, Peoples R China
基金
中国国家自然科学基金;
关键词
analytical approach; closed-form solution; flexural load; stress block; ultra-high-performance fiber-reinforced concrete (UHPFRC) beam; BEHAVIOR; UHPC;
D O I
10.14359/51742140
中图分类号
TU [建筑科学];
学科分类号
0813 ;
摘要
The mechanical and durability properties of ultra-high-performance fiber-reinforced concrete (UHPFRC) are superior to conventional are relatively complicated and cannot be applied to the analytical analysis of loaded beams for the ultimate and serviceability limit states. In this paper, a piecewise linear axial stress-strain relationship is proposed. The stress-strain relationship is further simplified as a rectangular stress block, and the stress of concrete during the whole loading process is accordingly evaluated. The development of the beam hinge at the midspan is described in detail, and it is then incorporated into the concrete stress blocks to derive an analytical approach and a closed-form solution for modeling the whole loading process of UHPFRC beams. Through comparisons with experimental results collected from the literature, it is validated that the proposed approaches can reasonably predict the whole loading process, including the ultimate strength, flexural rigidity, and ductility of UHPFRC beams, which only require material properties without any experimental calibration.
引用
收藏
页码:61 / 74
页数:14
相关论文
共 50 条
  • [31] Effectiveness of flange plates on torsional behaviors of ultra-high-performance fiber-reinforced concrete hollow beams
    Zhou, Jiale
    Yu, Peng
    Yoo, Doo-Yeol
    Yu, Lie
    Ke, Lu
    DEVELOPMENTS IN THE BUILT ENVIRONMENT, 2023, 16
  • [32] Curing-dependent structural behavior of ultra-high-performance hybrid fiber-reinforced concrete beams
    Khan, M. Iqbal
    Abbas, Yassir M.
    Fares, Galal
    STRUCTURES, 2023, 54 : 1440 - 1451
  • [33] Flexural Behavior of High-Strength Steel and Ultra-High-Performance Fiber-Reinforced Concrete Composite Beams
    Xia, Jun
    BUILDINGS, 2024, 14 (01)
  • [34] Dynamic fracture toughness of ultra-high-performance fiber-reinforced concrete under impact tensile loading
    Tuan Kiet Tran
    Ngoc Thanh Tran
    Duy-Liem Nguyen
    Dong Joo Kim
    Jun Kil Park
    Tri Thuong Ngo
    STRUCTURAL CONCRETE, 2021, 22 (03) : 1845 - 1860
  • [35] Experimental Investigation on Reinforced Ultra-High-Performance Fiber-Reinforced Concrete Composite Beams Subjected to Combined Bending and Shear
    Noshiravani, Talayeh
    Bruehwiler, Eugen
    ACI STRUCTURAL JOURNAL, 2013, 110 (02) : 251 - 261
  • [36] Shear Capacity of Glass Fiber-Reinforced Polymer-Reinforced Ultra-High-Performance Concrete Beams without Stirrups
    Kim, Yail J.
    Gebrehiwot, Haftom
    ACI STRUCTURAL JOURNAL, 2023, 120 (02) : 47 - 59
  • [37] Structural reliability of ultra-high-performance fiber reinforced concrete beams in shear
    Simwanda, Lenganji
    De Koker, Nico
    Viljoen, Celeste
    Babafemi, Adewumi John
    STRUCTURAL CONCRETE, 2023, 24 (02) : 2862 - 2878
  • [38] Effect of Fiber Orientation on Compressive Strength of Ultra-High-Performance Fiber-Reinforced Concrete
    Riedel, Philipp
    Leutbecher, Torsten
    ACI MATERIALS JOURNAL, 2021, 118 (02) : 199 - 209
  • [39] Response of ultra-high-performance fiber-reinforced concrete beams with continuous steel reinforcement subjected to low-velocity impact loading
    Yoo, Doo-Yeol
    Banthia, Nemkumar
    Kim, Sung-Wook
    Yoon, Young-Soo
    COMPOSITE STRUCTURES, 2015, 126 : 233 - 245
  • [40] Effect of age on the compressive strength of ultra-high-performance fiber-reinforced concrete
    Pourbaba, Masoud
    Asefi, Elyar
    Sadaghian, Hamed
    Mirmiran, Amir
    CONSTRUCTION AND BUILDING MATERIALS, 2018, 175 : 402 - 410