A multi-hybrid energy system for hybrid electric vehicles

被引:0
|
作者
Zhang X. [1 ]
Chau K.T. [1 ]
Chan C.C. [1 ]
机构
[1] Department of Electrical, Electronic Engineering, University of Hong Kong, Hong Kong Special Administration Region
关键词
Hybrid electric vehicles; Hybrid energy system; Multiple input converter; Photovoltaic; Thermoelectric;
D O I
10.3390/wevj4030505
中图分类号
学科分类号
摘要
Recently the thermoelectric-photovoltaic (TE-PV) hybrid energy system for hybrid electric vehicles has been proposed. However, the output voltage of this TE-PV hybrid energy system is governed by the voltage of the battery, which is affected by the state of charge of the battery and the charging/discharging current. Furthermore, in order to improve the power density and life cycle of the battery, the ultracapacitor (UC) has been proposed to hybridize with the battery to form a hybrid energy storage system. In this paper, a multi-hybrid energy system is proposed for HEVs, which incorporates the advantages of the TE-PV hybrid subsystem and the ultracapacitor-battery (UC-B) hybrid subsystem. On the one side, the TE-PV hybrid subsystem can provide the higher fuel economy due to the increase of on-board renewable energy, the better energy security due to the use of multiple energy sources, and the higher control flexibility due to the coordination for charging the same pack of batteries. On the other side, the UC-B hybrid subsystem can provide faster transient power, higher power density and longer battery lifetime. Detailed simulations results are given to highlight the effectiveness of the designed multi-hybrid energy system.© 2010 WEVA. © 2010 WEVA.
引用
收藏
页码:505 / 510
页数:5
相关论文
共 50 条
  • [1] The design of hybrid energy storage system for hybrid electric vehicles
    Wu, Zhiwei
    Zhang, Jianlong
    Yin, Chengliang
    Qiche Gongcheng/Automotive Engineering, 2012, 34 (03): : 190 - 196
  • [2] Development of a Hybrid Energy Storage System (HESS) for Electric and Hybrid Electric Vehicles
    Zhuge, K.
    Kazerani, M.
    2014 IEEE TRANSPORTATION ELECTRIFICATION CONFERENCE AND EXPO (ITEC), 2014,
  • [3] Development of a Hybrid Energy Storage System (HESS) for Electric and Hybrid Electric Vehicles
    Zhuge, K.
    Kazerani, M.
    2014 IEEE TRANSPORTATION ELECTRIFICATION CONFERENCE AND EXPO (ITEC), 2014,
  • [4] Advanced hybrid energy storage system for mild hybrid electric vehicles
    D. -H. Shin
    B. -H. Lee
    J. -B. Jeong
    H. -S. Song
    H. -J. Kim
    International Journal of Automotive Technology, 2011, 12 : 125 - 130
  • [5] Development of an Advanced Hybrid Energy Storage System for Hybrid Electric Vehicles
    Lee, Baek-Haeng
    Shin, Dong-Hyun
    Song, Hyun-Sik
    Heo, Hoon
    Kim, Hee-Jun
    JOURNAL OF POWER ELECTRONICS, 2009, 9 (01) : 51 - 60
  • [6] ADVANCED HYBRID ENERGY STORAGE SYSTEM FOR MILD HYBRID ELECTRIC VEHICLES
    Shin, D. -H.
    Lee, B. -H.
    Jeong, J. -B.
    Song, H. -S.
    Kim, H. -J.
    INTERNATIONAL JOURNAL OF AUTOMOTIVE TECHNOLOGY, 2011, 12 (01) : 125 - 130
  • [7] Nonlinear control of hybrid energy storage system for hybrid electric vehicles
    Majeed, Muhammad Asghar
    Khan, Muhammad Gufran
    Asghar, Furqan
    INTERNATIONAL TRANSACTIONS ON ELECTRICAL ENERGY SYSTEMS, 2020, 30 (04)
  • [8] Energy Management in Plugin Hybrid Electric Vehicles with Hybrid Energy Storage System Using Hybrid Approach
    Ramasamy, Kannan
    Chandramohan, Kalaivani
    Ghanta, Devadasu
    ENERGY TECHNOLOGY, 2022, 10 (10)
  • [9] A Novel Hybrid Energy Storage System for Electric Vehicles
    Porru, Mario
    Serpi, Alessandro
    Marongiu, Ignazio
    Damiano, Alfonso
    IECON 2015 - 41ST ANNUAL CONFERENCE OF THE IEEE INDUSTRIAL ELECTRONICS SOCIETY, 2015, : 3732 - 3737
  • [10] A Multi-Stage Energy Management System for Multi-Source Hybrid Electric Vehicles
    Serpi, Alessandro
    Porru, Mario
    45TH ANNUAL CONFERENCE OF THE IEEE INDUSTRIAL ELECTRONICS SOCIETY (IECON 2019), 2019, : 5901 - 5908