Molecular Dynamics Study of Hydrogen Bond Structure and Tensile Strength for Hydrated Amorphous Cellulose

被引:1
|
作者
Nakamura, Tomoka [1 ]
Ishiyama, Tatsuya [1 ]
机构
[1] Univ Toyama, Grad Sch Sci & Engn, Dept Appl Chem, Toyama 9308555, Japan
关键词
PARTICLE MESH EWALD; FORCE-FIELD; SIMULATIONS; TEMPERATURE; TRANSITION; CRYSTALS; BEHAVIOR; WATER;
D O I
10.1021/acs.biomac.4c00950
中图分类号
Q5 [生物化学]; Q7 [分子生物学];
学科分类号
071010 ; 081704 ;
摘要
Molecular dynamics (MD) simulations were conducted to investigate the hydrogen-bond (H-bond) structure and its impact on the tensile strength of hydrated amorphous cellulose. The study identifies a stable intramolecular H-bond between the hydroxyl group at position 3 and the ether oxygen at position 5 (OH3<middle dot><middle dot><middle dot>O5). Intermolecularly, the hydroxyl groups at positions 2 (OH2) and 6 (OH6) form stable H-bonds. Young's modulus, maximum tensile strength, and corresponding strain were calculated as functions of moisture content, while the H-bond network, water cluster formation, and cellulose chain orientation during tensile simulations were analyzed to elucidate mechanical properties. The substitution effect of cellulose on Young's modulus is also examined, revealing that the substitution of OH3 for a hydrophobic group minimally affects Young's modulus, but substitutions at OH2 and OH6 significantly reduce tensile strength due to their roles as key intermolecular H-bond donor sites.
引用
收藏
页码:7249 / 7259
页数:11
相关论文
共 50 条
  • [31] Structure and dynamics of the symmetric hydrogen bond in potassium hydrogen maleate: a neutron scattering study
    Fillaux, F
    Leygue, N
    Tomkinson, J
    Cousson, A
    Paulus, W
    CHEMICAL PHYSICS, 1999, 244 (2-3) : 387 - 403
  • [32] Molecular Dynamics and Quantum Chemical Approach for the Estimation of an Intramolecular Hydrogen Bond Strength in Okadaic Acid
    Matsui, Toru
    Yamamoto, Kanako
    Fujita, Takehiro
    Morihashi, Kenji
    JOURNAL OF PHYSICAL CHEMISTRY B, 2018, 122 (29): : 7233 - 7242
  • [33] Proton dynamics in molecular solvent clusters as an indicator for hydrogen bond network strength in confined geometries
    Saak, Clara-Magdalena
    Richter, Clemens
    Unger, Isaak
    Mucke, Melanie
    Nicolas, Christophe
    Hergenhahn, Uwe
    Caleman, Carl
    Huttula, Marko
    Patanen, Minna
    Bjoerneholm, Olle
    PHYSICAL CHEMISTRY CHEMICAL PHYSICS, 2020, 22 (06) : 3264 - 3272
  • [34] Effect of amorphous cellulose on the deformation behavior of cellulose composites: molecular dynamics simulation
    Ren, Zechun
    Guo, Rui
    Zhou, Xinyuan
    Bi, Hongjie
    Jia, Xin
    Xu, Min
    Wang, Jun
    Cai, Liping
    Huang, Zhenhua
    RSC ADVANCES, 2021, 11 (33) : 19967 - 19977
  • [35] Molecular dynamics study of polymer-water interaction in hydrogels .1. Hydrogen-bond structure
    Tamai, Y
    Tanaka, H
    Nakanishi, K
    MACROMOLECULES, 1996, 29 (21) : 6750 - 6760
  • [36] FLUCTUATION NETWORK OF MOLECULAR ENTANGLEMENTS AND TENSILE-STRENGTH OF AMORPHOUS POLYMERS
    KOZLOV, GV
    BELOUSOV, VN
    LIPATOV, YS
    DOPOVIDI AKADEMII NAUK UKRAINSKOI RSR SERIYA B-GEOLOGICHNI KHIMICHNI TA BIOLOGICHNI NAUKI, 1990, (06): : 48 - 51
  • [37] Molecular dynamics modelling of hydrated mineral interlayers and surfaces: structure and dynamics
    Kirkpatrick, RJ
    Kalinichev, AG
    Wang, J
    MINERALOGICAL MAGAZINE, 2005, 69 (03) : 289 - 308
  • [38] Structure, Dynamics, and Reactivity of Hydrated Electrons by Ab Initio Molecular Dynamics
    Marsalek, Ondrej
    Uhlig, Frank
    Vandevondele, Joost
    Jungwirth, Pavel
    ACCOUNTS OF CHEMICAL RESEARCH, 2012, 45 (01) : 23 - 32
  • [39] Hydrogen bond dynamics and vibrational spectroscopy of aqueous system: An ab initio molecular dynamics study
    Karmakar, Anwesa
    ABSTRACTS OF PAPERS OF THE AMERICAN CHEMICAL SOCIETY, 2012, 244
  • [40] Effect of oxidation on cellulose and water structure: a molecular dynamics simulation study
    Mudedla, Sathish Kumar
    Vuorte, Maisa
    Veijola, Elias
    Marjamaa, Kaisa
    Koivula, Anu
    Linder, Markus B.
    Arola, Suvi
    Sammalkorpi, Maria
    CELLULOSE, 2021, 28 (07) : 3917 - 3933