Depolarization of a randomly distributed plasmonic meander metasurface characterized by Mueller matrix spectroscopic ellipsometry

被引:0
作者
Fu L. [1 ]
Berrier A. [2 ]
Li H. [1 ]
Schau P. [1 ]
Frenner K. [1 ]
Dressel M. [2 ]
Osten W. [1 ]
机构
[1] Institute of Applied Optics and Research Center SCoPE, Pfaffenwaldring 9, Stuttgart
[2] 1. Physikalisches Institut and Research Center SCoPE, Universität Stuttgart, Pfaffenwaldring 57, Stuttgart
来源
Optics Express | 2016年 / 24卷 / 24期
关键词
Optical properties - Depolarization - Spectroscopic ellipsometry - Surface plasmon resonance - Incident light - Light polarization;
D O I
10.1364/OE.24.028056
中图分类号
学科分类号
摘要
Metallic nanostructures offer efficient solutions in polarization control with a very low thickness. In this report, we investigate the optical properties of a nano-fabricated plasmonic pseudo-depolarizer using Mueller matrix spectroscopic ellipsometry in transmission configuration. The depolarizer is composed of 256 square cells, each containing a periodically corrugated metallic film with random orientation. The full Mueller matrix was analyzed as a function of incident angle in a range between 0 and 20° and over the whole rotation angle range. Depolarization could be achieved in two visible wavelength regions around the short-range and long-range surface plasmon polariton frequencies, respectively. Furthermore, depolarization for circularly polarized light was 2.5 times stronger than that for linearly polarized light. Our results could work as a guidance for realizing a broadband high efficiency dielectric metasurface depolarizers. © 2016 Optical Society of America.
引用
收藏
页码:28056 / 28064
页数:8
相关论文
共 31 条
  • [1] Quartz-Wedge Depolarizers” and “Liquid Crystal Polymer (LCP) Depolarizers
  • [2] Dorband B., Muller H., Gross H., Handbook of Optical Systems, Metrology of Optical Components and Systems, (2012)
  • [3] Sande J.C.G., Piquero G., Teijeiro C., Polarization changes at Lyot depolarizer output for different types of input beams, J. Opt. Soc. Am. A, 29, 3, pp. 278-284, (2012)
  • [4] Honma M., Nose T., Liquid-crystal depolarizer consisting of randomly aligned hybrid orientation domains, Appl. Opt., 43, 24, pp. 4667-4671, (2004)
  • [5] Wei B.-Y., Chen P., Ge S.-J., Zhang L.-C., Hu W., Lu Y.-Q., Liquid crystal depolarizer based on photoalignment technology, Photonics Res, 4, 2, (2016)
  • [6] Schuller J.A., Barnard E.S., Cai W., Jun Y.C., White J.S., Brongersma M.L., Plasmonics for extreme light concentration and manipulation, Nat. Mater., 9, 3, pp. 193-204, (2010)
  • [7] Drezet A., Genet C., Ebbesen T.W., Miniature plasmonic wave plates, Phys. Rev. Lett., 101, 4, (2008)
  • [8] Feng L., Mizrahi A., Zamek S., Liu Z., Lomakin V., Fainman Y., Metamaterials for enhanced polarization conversion in plasmonic excitation, ACS Nano, 5, 6, pp. 5100-5106, (2011)
  • [9] Hakobyan D., Magallanes H., Seniutinas G., Juodkazis S., Brasselet E., Tailoring orbital angular momentum of light in the visible domain with metallic metasurfaces, Adv. Opt. Mater., 4, 2, pp. 306-312, (2015)
  • [10] de Zuani S., Reindl T., Rommel M., Gompf B., Berrier A., Dressel M., High-order Hilbert curves: Fractal structures with isotropic, tailorable optical properties, ACS Photonics, 2, 12, pp. 1719-1724, (2015)