Four remarks on spin coherent states

被引:7
作者
Baecklund, Anna [1 ]
Bengtsson, Ingemar [2 ]
机构
[1] Teoretisk Fysik, Kungliga Tekniska Högskolan, Stockholm
[2] Fysikum, Stockholms Universitet, Stockholm
关键词
Coherent states; Quantum mechanics; SU(2); Wehrl entropy;
D O I
10.1088/0031-8949/2014/T163/014012
中图分类号
学科分类号
摘要
We discuss how to recognize the constellations seen in the Majorana representation of quantum states. Then we give explicit formulae for the metric and symplectic form on SU (2) orbits containing general number states. Their metric and symplectic areas differ unless the states are coherent. Finally we discuss some patterns that arise from the Lieb-Solovej map, and for dimensions up to nine we find the location of those states that maximize the Wehrl-Lieb entropy. © 2014 The Royal Swedish Academy of Sciences.
引用
收藏
相关论文
共 19 条
  • [1] Schwinger J., Quantum theory of angular momentum, On Angular Momentum, (1965)
  • [2] Majorana E., Atomi orientati in campo magnetico variabile, Nuovo Cimento, 9, (1932)
  • [3] Penrose R., A spinor approach to general relativity, Ann. Phys. (NY), 10, (1960)
  • [4] Bacry H., Orbits of the rotation group on spin states, J. Math. Phys., 15, (1974)
  • [5] Lieb E.H., Proof of an entropy conjecture of Wehrl, Commun. Math. Phys., 62, (1978)
  • [6] Lieb E.H., Solovej J.P., Proof of An Entropy Conjecture for Bloch Coherent States and Its Generalizations
  • [7] Bengtsson I., Zyczkowski K., Geometry of Quantum States UP, (2006)
  • [8] Penrose R., Orthogonality of general spin states, Twistor News. Lett., 36, (1993)
  • [9] Brody D.C., Hughston L.P., Geometric quantum mechanics, J. Geom. Phys., 38, (2001)
  • [10] Hsiang W.Y., On compact homogeneous minimal submanifolds, Proc. Natl Acad. Sci. USA, 5, (1966)