Improved AutoEncoder With LSTM Module and KL Divergence for Anomaly Detection

被引:1
作者
Huang, Wei [1 ]
Zhang, Bingyang [1 ]
Zhang, Kaituo [1 ]
Gao, Hua [1 ]
Wan, Rongchun [2 ]
机构
[1] Zhejiang Univ Technol, Coll Comp Sci, Hangzhou 310023, Peoples R China
[2] Zhejiang HOUDAR Intelligent Technol Co Ltd, Hangzhou 310023, Peoples R China
基金
中国国家自然科学基金;
关键词
Data models; Long short term memory; Vectors; Anomaly detection; Feature extraction; Training; Mathematical models; autoencoder; deep support vector data description (Deep SVDD); hypersphere collapse; LSTM; NETWORK;
D O I
10.1109/TIM.2024.3460931
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
The task of anomaly detection is to separate anomalous data from normal data in the dataset. Models such as deep Convolutional AutoEncoder (CAE) and deep support vector data description (SVDD) have been universally used and have demonstrated significant success in detecting anomalies. However, the over-reconstruction ability of CAE network for anomalous data can easily lead to high false-negative rate in detecting anomalous data. On the other hand, the deep support vector data description (Deep SVDD) model has the drawback of feature collapse, which leads to a decrease in detection accuracy for anomalies. To address these problems, we propose the Improved AutoEncoder with LSTM module and Kullback-Leibler divergence (IAE-LSTM-KL) model in this article. An LSTM network is added after the encoder to memorize feature representations of normal data. Meanwhile, the phenomenon of feature collapse can also be mitigated by penalizing the featured input to SVDD module via KL divergence. The efficacy of the IAE-LSTM-KL model is validated through experiments on both synthetic and real-world datasets. Experimental results show that IAE-LSTM-KL model yields higher detection accuracy for anomalies. In addition, it is also found that the IAE-LSTM-KL model demonstrates enhanced robustness to contaminated outliers in the dataset.
引用
收藏
页数:11
相关论文
共 27 条
  • [1] Latent Space Autoregression for Novelty Detection
    Abati, Davide
    Porrello, Angelo
    Calderara, Simone
    Cucchiara, Rita
    [J]. 2019 IEEE/CVF CONFERENCE ON COMPUTER VISION AND PATTERN RECOGNITION (CVPR 2019), 2019, : 481 - 490
  • [2] Optuna: A Next-generation Hyperparameter Optimization Framework
    Akiba, Takuya
    Sano, Shotaro
    Yanase, Toshihiko
    Ohta, Takeru
    Koyama, Masanori
    [J]. KDD'19: PROCEEDINGS OF THE 25TH ACM SIGKDD INTERNATIONAL CONFERENCCE ON KNOWLEDGE DISCOVERY AND DATA MINING, 2019, : 2623 - 2631
  • [3] [Anonymous], 2009, Learning multiple layers of features from tiny images
  • [4] MVTec AD - A Comprehensive Real-World Dataset for Unsupervised Anomaly Detection
    Bergmann, Paul
    Fauser, Michael
    Sattlegger, David
    Steger, Carsten
    [J]. 2019 IEEE/CVF CONFERENCE ON COMPUTER VISION AND PATTERN RECOGNITION (CVPR 2019), 2019, : 9584 - 9592
  • [5] Improved autoencoder for unsupervised anomaly detection
    Cheng, Zhen
    Wang, Siwei
    Zhang, Pei
    Wang, Siqi
    Liu, Xinwang
    Zhu, En
    [J]. INTERNATIONAL JOURNAL OF INTELLIGENT SYSTEMS, 2021, 36 (12) : 7103 - 7125
  • [6] Falcon WA., 2019, Pytorch Lightning: GitHub', V3
  • [7] Golan I., 2018, NIPS'18: Proceedings of the 32nd International Conference on Neural Information Processing Systems, P9781
  • [8] Memorizing Normality to Detect Anomaly: Memory-augmented Deep Autoencoder for Unsupervised Anomaly Detection
    Gong, Dong
    Liu, Lingqiao
    Le, Vuong
    Saha, Budhaditya
    Mansour, Moussa Reda
    Venkatesh, Svetha
    van den Hengel, Anton
    [J]. 2019 IEEE/CVF INTERNATIONAL CONFERENCE ON COMPUTER VISION (ICCV 2019), 2019, : 1705 - 1714
  • [9] Hochreiter S, 1997, NEURAL COMPUT, V9, P1735, DOI [10.1162/neco.1997.9.1.1, 10.1007/978-3-642-24797-2]
  • [10] CoDetect: Financial Fraud Detection With Anomaly Feature Detection
    Huang, Dongxu
    Mu, Dejun
    Yang, Libin
    Cai, Xiaoyan
    [J]. IEEE ACCESS, 2018, 6 : 19161 - 19174