Feature-Aware Contrastive Learning With Bidirectional Transformers for Sequential Recommendation

被引:0
|
作者
Du, Hanwen [1 ]
Yuan, Huanhuan [1 ]
Zhao, Pengpeng [1 ]
Wang, Deqing [2 ]
Sheng, Victor S. [3 ]
Liu, Yanchi [4 ]
Liu, Guanfeng [5 ]
Zhao, Lei [1 ]
机构
[1] Soochow Univ, Sch Comp Sci & Technol, Suzhou 215003, Peoples R China
[2] Beihang Univ, Sch Comp Sci & Engn, Beijing 100191, Peoples R China
[3] Texas Tech Univ, Dept Comp Sci, Lubbock, TX 79409 USA
[4] Rutgers State Univ, New Brunswick, NJ 08854 USA
[5] Macquarie Univ, Sydney 2109, Australia
关键词
Task analysis; Self-supervised learning; Motion pictures; Predictive models; Behavioral sciences; Current transformers; Computational modeling; Sequential recommendation; self-supervised learning; feature modeling; NETWORK;
D O I
10.1109/TKDE.2023.3343345
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
Contrastive learning with Transformer-based sequence encoder has gained predominance for sequential recommendation due to its ability to mitigate the data noise and the data sparsity issue. However, existing contrastive learning approaches for sequential recommendation still suffer from two limitations. First, they mainly center on left-to-right unidirectional Transformers as base encoders, which are suboptimal for sequential recommendation because user behaviors may not be a rigid left-to-right sequence. Second, they devise contrastive learning objectives only from the sequence level, neglecting the rich self-supervision signals from the feature level. To address these limitations, we propose a novel framework called Feature-aware Contrastive Learning with bidirectional Transformers for sequential Recommendation (FCLRec) to effectively leverage feature information for sequential recommendation. Specifically, we first augment bidirectional Transformers with a novel feature-aware self-attention module that is able to simultaneously model the complex relationships between sequences and features. Next, we propose a novel feature-aware contrastive learning objective that generates a collection of positive samples via three types of augmentations from three different levels. Finally, we adopt feature prediction as an auxiliary task to strengthen the connections between items and features. Our experimental results on four public benchmark datasets show that FCLRec outperforms the state-of-the-art methods for sequential recommendation.
引用
收藏
页码:8192 / 8205
页数:14
相关论文
共 50 条
  • [1] Contrastive Learning with Bidirectional Transformers for Sequential Recommendation
    Du, Hanwen
    Shi, Hui
    Zhao, Pengpeng
    Wang, Deqing
    Sheng, Victor S.
    Liu, Yanchi
    Liu, Guanfeng
    Zhao, Lei
    PROCEEDINGS OF THE 31ST ACM INTERNATIONAL CONFERENCE ON INFORMATION AND KNOWLEDGE MANAGEMENT, CIKM 2022, 2022, : 396 - 405
  • [2] Intent Contrastive Learning for Sequential Recommendation
    Chen, Yongjun
    Liu, Zhiwei
    Li, Jia
    McAuley, Julian
    Xiong, Caiming
    PROCEEDINGS OF THE ACM WEB CONFERENCE 2022 (WWW'22), 2022, : 2172 - 2182
  • [3] A feature-aware long-short interest evolution network for sequential recommendation
    Tang, Jing
    Fan, Yongquan
    Du, Yajun
    Li, Xianyong
    Chen, Xiaoliang
    INTELLIGENT DATA ANALYSIS, 2024, 28 (03) : 733 - 750
  • [4] Multi-intent Aware Contrastive Learning for Sequential Recommendation
    Huang, Junshu
    Long, Zi
    Fu, Xianghua
    Chen, Yin
    ARTIFICIAL NEURAL NETWORKS AND MACHINE LEARNING-ICANN 2024, PT IX, 2024, 15024 : 89 - 104
  • [5] Item Attribute-Aware Contrastive Learning for Sequential Recommendation
    Yan, Bing
    Wang, Huaxing
    Ouyang, Zijie
    Chen, Chao
    Xia, Yang
    IEEE ACCESS, 2023, 11 (70795-70804): : 70795 - 70804
  • [6] FDGNN: Feature-Aware Disentangled Graph Neural Network for Recommendation
    Liu, Xiao
    Meng, Shunmei
    Li, Qianmu
    Liu, Qiyan
    He, Qiang
    Ramesh, Dharavath
    Qi, Lianyong
    IEEE TRANSACTIONS ON COMPUTATIONAL SOCIAL SYSTEMS, 2024, 11 (01) : 1372 - 1383
  • [7] Temporal Density-aware Sequential Recommendation Networks with Contrastive Learning
    Wang, Jihu
    Shi, Yuliang
    Yu, Han
    Zhang, Kun
    Wang, Xinjun
    Yan, Zhongmin
    Li, Hui
    EXPERT SYSTEMS WITH APPLICATIONS, 2023, 211
  • [8] Equivariant Contrastive Learning for Sequential Recommendation
    Zhou, Peilin
    Gao, Jingqi
    Xie, Yueqi
    Ye, Qichen
    Hua, Yining
    Kim, Jaeboum
    Wang, Shoujin
    Kim, Sunghun
    PROCEEDINGS OF THE 17TH ACM CONFERENCE ON RECOMMENDER SYSTEMS, RECSYS 2023, 2023, : 129 - 140
  • [9] Learnable Model Augmentation Contrastive Learning for Sequential Recommendation
    Hao, Yongjing
    Zhao, Pengpeng
    Xian, Xuefeng
    Liu, Guanfeng
    Zhao, Lei
    Liu, Yanchi
    Sheng, Victor S.
    Zhou, Xiaofang
    IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING, 2024, 36 (08) : 3963 - 3976
  • [10] Dual Contrastive Network for Sequential Recommendation
    Lin, Guanyu
    Gao, Chen
    Li, Yinfeng
    Zheng, Yu
    Li, Zhiheng
    Jin, Depeng
    Li, Yong
    PROCEEDINGS OF THE 45TH INTERNATIONAL ACM SIGIR CONFERENCE ON RESEARCH AND DEVELOPMENT IN INFORMATION RETRIEVAL (SIGIR '22), 2022, : 2686 - 2691