Vehicle detection algorithm for FPGA based implementation

被引:0
作者
Silesian University of Technology, ul.Krasinskiego 8, Katowice, Poland [1 ]
机构
[1] Silesian University of Technology, ul.Krasinskiego 8, Katowice
来源
Adv. Intell. Soft Comput. | 2009年 / 585-592期
关键词
D O I
10.1007/978-3-540-93905-4_68
中图分类号
学科分类号
摘要
The paper presents a discussion of necessary properties of an algorithm processing a real world video stream for detecting vehicles in defined detection fields and proposes a robust solution which is suitable for FPGA based implementation. The solution is build on spatiotemporal filtering supported by a modified recursive approximation of the temporal median of the detection fields ocupancy factors. The resultant algorithm may process image pixels serially which is an especially desirable property when devising logic based processing hardware. © Springer-Verlag Berlin Heidelberg 2009.
引用
收藏
页码:585 / 592
页数:7
相关论文
共 13 条
[1]  
Wu Y., Shen J., Dai M., Traffic object detections and it’s action analysis, Pattern Recognition Letters, 26, pp. 1963-1984, (2005)
[2]  
Michalopoulos P.G., Vehicle detection video through image processing: The autoscope system, IEEE Trans. Vehicular Technol, 40, 1, pp. 21-29, (1991)
[3]  
Coifman B., Beymer D., McLauchlan P., Malik J., A real-time computer vision system for vehicle tracking and traffic surveillance, Transport Research Part C: Emerging Technologies, 6, 4, pp. 271-278, (1998)
[4]  
Cucchiara R., Grana C., Piccardi M., Prati A., Detecting moving objects, ghosts, and shadows in video streams, IEEE Trans. Pattern Analysis Machine Intelligence, 25, pp. 1337-1342, (2003)
[5]  
Manzanera A., Richefeu J.C., A new motion detection algorithm based on Σ −Δ background estimation, Pattern Recognition Letters, 28, pp. 320-328, (2007)
[6]  
Stauffer C., Grimson W., Adaptive background mixture models for real-time tracking, Proc. IEEE Conference on Computer Vision and Pattern Recognition, pp. 246-252, (1999)
[7]  
Kaewtrakulpong P., Bowden R., An Improved Adaptive Background Mixture Model for Realtime Tracking with Shadow Detection, Proc. 2Nd European Workshop on Advanced Video Based Surveillance Systems, AVBS 2001, (2001)
[8]  
Bhandakar S.M., Luo X., Fast and Robust Background Updating for Real-time Traffic Surveillance and Monitoring, Proc. IEEE Conference on Computer Vision and Pattern Recognition, pp. 278-284, (2005)
[9]  
Yadav R.B., Nishchal N.K., Gupta A.K., Rastogi V.K., Retrieval and classification of shape-based objects using Fourier, generic Fourier, and wavelet- Fourier descriptors technique: A comparative study, Optics and Lasers in Engineering, 45, pp. 695-708, (2007)
[10]  
Suna Z., Bebisa G., Miller R., Object detection using feature subset selection, Pattern Recognition, 37, pp. 2165-2176, (2004)