Feature Enhancement SSD for Object Detection

被引:0
|
作者
Tan H. [1 ]
Li S. [1 ]
Liu B. [1 ]
Liu X. [1 ]
机构
[1] School of Mathematical Sciences, Dalian University of Technology, Dalian
来源
Jisuanji Fuzhu Sheji Yu Tuxingxue Xuebao/Journal of Computer-Aided Design and Computer Graphics | 2019年 / 31卷 / 04期
关键词
Feature fusion; Network structure; Object detection; Single shot multibox detector;
D O I
10.3724/SP.J.1089.2019.17331
中图分类号
学科分类号
摘要
This paper presents feature enhancement single shot multi-box detector (FE-SSD) for object detection. In FE-SSD network structure, firstly we apply scale-invariant convolution operation on each scale feature map in SSD's pyramid feature maps. Then fusing the original feature and convolved feature generates new SSD's feature pyramid, which will be fed to multibox detectors to predict the final detection results. On the PASCAL VOC2007 test, our network can achieve 78.0% mean average precision (mAP) at the speed of 82.5 frame per second (FPS) with the input size 300×300. On extended experiment, FE-SSD performance over SSD in blurry object detection. © 2019, Beijing China Science Journal Publishing Co. Ltd. All right reserved.
引用
收藏
页码:573 / 579
页数:6
相关论文
共 26 条
  • [1] Girshick R., Donahue J., Darrell T., Et al., Rich feature hierarchies for accurate object detection and semantic segmentation, Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 580-587, (2014)
  • [2] Girshick R., Fast R-CNN, Proceedings of the IEEE International Conference on Computer Vision, pp. 1440-1448, (2015)
  • [3] Ren S.Q., He K.M., Girshick R., Et al., Faster R-CNN: towards real-time object detection with region proposal networks, Proceedings of the 28th International Conference on Neural Information Processing Systems, 1, pp. 91-99, (2015)
  • [4] Redmon J., Divvala S., Girshick R., Et al., You only look once: unified, real-time object detection, Proceedings of the IEEE International Conference on Computer Vision, pp. 779-788, (2016)
  • [5] Liu W., Anguelov D., Erhan D., Et al., SSD: single shot multibox detector, Proceedings of European Conference on Computer Vision, pp. 21-37, (2016)
  • [6] He K.M., Zhang X.Y., Ren S.Q., Et al., Spatial pyramid pooling in deep convolutional networks for visual recognition, IEEE Transactions on Pattern Analysis and Machine Intelligence, 37, 9, pp. 1904-1916, (2015)
  • [7] Dai J.F., Li Y., He K.M., Et al., R-FCN: object detection via region-based fully convolutional networks
  • [8] Fu C.Y., Liu W., Ranga A., Et al., DSSD: deconvolutional single shot detector
  • [9] Shen Z.Q., Liu Z., Li J.G., Et al., DSOD: learning deeply supervised object detectors from scratch, Proceedings of the IEEE International Conference on Computer Vision, pp. 1937-1945, (2017)
  • [10] Lin T.Y., Dollar P., Girshick R., Et al., Feature pyramid networks for object detection, Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 936-944, (2017)