Data-driven assessment of electrode calendering process by combining experimental results, in silico mesostructures generation and machine learning

被引:73
作者
Duquesnoy M. [1 ,2 ]
Lombardo T. [1 ,2 ]
Chouchane M. [1 ,2 ]
Primo E.N. [1 ,2 ]
Franco A.A. [1 ,2 ,3 ,4 ]
机构
[1] Laboratoire de Réactivité et Chimie des Solides (LRCS), UMR CNRS 7314, Université de Picardie Jules Verne, Hub de l'Energie, 15, rue Baudelocque, Amiens Cedex
[2] Réseau sur le Stockage Electrochimique de l'Energie (RS2E), FR CNRS 3459, Hub de l'Energie, 15, rue Baudelocque, Amiens Cedex
[3] ALISTORE-European Research Institute, FR CNRS 3104, Hub de l'Energie, 15, rue Baudelocque, Amiens Cedex
[4] Institut Universitaire de France, 103 Boulevard Saint Michel, Paris
基金
欧洲研究理事会; 欧盟地平线“2020”;
关键词
Calendering; Electrode mesostructure; Li-ion batteries; Machine learning; Manufacturing;
D O I
10.1016/j.jpowsour.2020.229103
中图分类号
学科分类号
摘要
Both society and market calls for safer, high-performing and cheap Li-ion batteries (LIBs) in order to speed up the transition from oil-based to electric-based economy. One critical aspect to be taken into account in this modern challenge is LIBs manufacturing process, whose optimization is time and resources consuming due to the several interdependent physicochemical mechanisms involved. In order to tackle rapidly this challenge, digital tools able to optimize LIBs manufacturing parameters are crucially needed for both well-known and recently discovered chemistries. The methodology presented here encompasses experimental characterizations, in silico generation of electrode mesostructures and machine learning algorithms to track the effect of the calendering process over a wide array of mesoscale electrode properties critically linked to the electrochemical performance. Particularly, features as the interconnectivity of the particles network, the electrolyte tortuosity and effective ionic conductivity, the percentage of current collector surface covered by either active material or carbon-binder domain particles and the active material surface in contact with electrolyte were analysed and discussed in detail. This approach was tested and validated for the case of LiNi1/3Mn1/3Co1/3O2-based cathodes calendering, proving its capability to ease the process parameters-electrode properties interdependencies analysis, paving the way to deeper understanding of LIBs manufacturing. © 2020 The Authors
引用
收藏
相关论文
共 60 条
[1]  
Opitz A., Badami P., Shen L., Vignarooban K., Kannan A.M., Can Li-Ion batteries be the panacea for automotive applications?, Renew. Sustain. Energy Rev., 68, 1, pp. 685-692, (2017)
[2]  
Winter M., Barnett B., Xu K., Before Li ion batteries, Chem. Rev., 118, pp. 11433-11456, (2018)
[3]  
Larcher D.J.-M.T., Towards greener and more sustainable batteries for electrical energy storage, Nat. Chem., 7, pp. 19-29, (2015)
[4]  
Nitta N., Wu F., Lee J.T., Yushin G., Li-ion battery materials: present and future, Mater. Today, 18, pp. 252-264, (2015)
[5]  
Blomgren G.E., The development and future of lithium ion batteries, J. Electrochem. Soc., 164, pp. A5019-A5025, (2017)
[6]  
Assat G., Tarascon J.M., Fundamental understanding and practical challenges of anionic redox activity in Li-ion batteries, Nat. Energy., 3, pp. 373-386, (2018)
[7]  
Poizot P., Dolhem F., Gaubicher J., Progress in all-organic rechargeable batteries using cationic and anionic configurations: toward low-cost and greener storage solutions?, Curr. Opin. Electrochem., 9, pp. 70-80, (2018)
[8]  
Cheng C., Drummond R., Duncan S.R., Grant P.S., Combining composition graded positive and negative electrodes for higher performance Li-ion batteries, J. Power Sources, 448, (2020)
[9]  
Nadeina A., Rozier P., Seznec V., Facile synthesis of a common Na-ion battery cathode material Na3V2(PO4)2F3 by spark plasma sintering, (2020)
[10]  
Maurel A., Courty M., Fleutot B., Tortajada H., Prashantha K., Armand M., Grugeon S., Panier S., Dupont L., Highly loaded graphite-polylactic acid composite-based filaments for lithium-ion battery three-dimensional printing, Chem. Mater., 30, pp. 7484-7493, (2018)