All-Terrain Vehicle (ATV) Handling and Control, Analysis of Objective Data

被引:2
作者
Fowler G.F. [1 ]
Larson R. [1 ]
机构
[1] Fowler, Graeme F.
[2] Larson, Robert
来源
| 1600年 / SAE International卷 / 01期
关键词
Steering;
D O I
10.4271/2017-01-1557
中图分类号
学科分类号
摘要
Because the great majority of All-Terrain Vehicles (ATVs) use a solid rear axle for improved off-road mobility, these vehicles typically transition from understeer to oversteer with increased cornering severity in tests customarily used by automobile manufacturers to measure steady-state vehicle handling properties. An oversteer handling response is contrary to the accepted norm for on-road passenger vehicles and, for this reason, has drawn scrutiny from numerous researchers. In this paper, an evaluation of ATV handling is presented in which 10 participants operated an ATV that was configured to have two different steady-state cornering characteristics. One configuration produced an approximately linear understeer response (labeled US) and the other configuration transitioned from understeer to oversteer (labeled US-OS) with increasing lateral acceleration in constant-radius turn tests conducted on a skid pad. After operating the ATV on a closed dirt track the participants were questioned about the handling qualities of each configuration. Participants found that the ATV with either the US or US-OS steady-state handling characteristic would be satisfactory for their typical use of an ATV; however, participants overwhelmingly preferred the US-OS Configuration. No participant reported that either configuration was unpredictable, although the US-OS configured ATV was rated as more comfortable and received better steering feedback ratings for tight turns compared to the US Configuration. A detailed discussion of the participant responses is provided in [1] while the objective steering and vehicle response data and video collected in the study is the focus of this paper. Consistent with the participant's feedback, the objective data did not indicate that there was a control issue associated with the ATV configured to have an understeer/oversteer steady-state handling response. © 2017 SAE International.
引用
收藏
页码:204 / 219
页数:15
相关论文
共 13 条
  • [1] Schwark J., Fowler G., Larson R., Rauschenberger R., An Investigation of Operator Performance in All-Terrain Vehicle (ATV) Handling and Control, International Conference on Applied Human Factors and Ergonomics (AHFE 2015), 20:1567-1574, Procedia Manufacturing, (2015)
  • [2] Allen R., Rosenthal T., Klyde D., Szostak H., Transient Analysis of All Terrain vehicle Lateral Directional Handling & Stability, SAE Technical Paper 891109, (1989)
  • [3] Vehicle Characteristics Measurements of All-Terrain Vehicles, Presentation at CPSC Public Meeting at SEA, (2016)
  • [4] American National Standard for Four Wheel All-Terrain Vehicles, pp. 1-2010
  • [5] Fowler G., Fries R., McCarthy R., Forouhar F., Steady-State and Transient Response of Selected All-Terrain Vehicles (ATVs), SAE Technical Paper 940277, (1994)
  • [6] Forouhar F., All-Terrain vehicles frequency domain response analysis and rider behavior, Proceedings of the 1997 IEEE International Conference on Control Applications, (1997)
  • [7] Renfroe D., Roberts A., Grzebieta R., Rechnitzer G., Reconciliation of ATV/UTV Handling Characteristics and the Operator, SAE Technical Paper 2014-01-0095, (2014)
  • [8] Grzebieta R., The Australian Terrain Vehicle Assessment Program (ATVAP), Paper No. 15-0144, Experimental Safety Vehicle (ESV) Conference, (2015)
  • [9] Grzebieta R., Rechnitzer G., McIntosh A., Final Project Summary Report: Quad Bike Performance Project Test Results, Conclusions, and Recommendations, (2015)
  • [10] Safety Standard for Recreational Off-Highway Vehicles (ROVs), Notice of Proposed Rulemaking, Docket No. CPSC-2009-0087, (2014)