Development of water electrolysis cell for hydrogen production utilizing sulfur dioxide

被引:0
作者
Japan Atomic Energy Agency, 4002 Narita-cho, Oarai-machi, Higashiibaraki-gun, Ibaraki 311-1393, Japan [1 ]
不详 [2 ]
机构
[1] Japan Atomic Energy Agency, Higashiibaraki-gun, Ibaraki 311-1393, 4002 Narita-cho, Oarai-machi
[2] FC Development Co. Ltd., Hitachi-shi, Ibaraki 316-0033
来源
Trans. At. Energy Soc. Jpn. | 2008年 / 1卷 / 58-65期
关键词
Fast breeder reactor; Hydrogen production; So[!sub]2[!/sub] oxidation; Thermo-chemical and electrolytic hybrid process; Water electrolysis;
D O I
10.3327/taesj.J07.012
中图分类号
学科分类号
摘要
Water electrolysis utilizing sulfur dioxide is attractive for low-electricity-consumption hydrogen production and has been investigated for the electrolytic and thermochemical hybrid hydrogen production process utilizing the heat generated by a nuclear power plant. In this study, the hydrogen production performance of the water electrolysis cell utilizing sulfur dioxide gas and the sulfur dioxide crossover prevention performance of several polymer electrolytes were investigated experimentally. © Atomic Energy Society of Japan.
引用
收藏
页码:58 / 65
页数:7
相关论文
共 8 条
  • [1] Weirich W., Knoche K.F., Behr F., Et al., Thermochemical Processes for Water Splitting-Status and Outlook, Nucl. Eng. Des, 78, (1984)
  • [2] Sakaba N., Kasahara S., Ohashi H., Et al., Hydrogen production by thermochemical water-splitting IS process utilizing heat from high-temperature reactor HTTR, Proc. of WHEC16, (2006)
  • [3] Nakagiri T., Kase T., Kato S., Et al., Development of a new thermochemical and electrolytic hybrid hydrogen production system for sodium cooled FBR, JSME Int. J., Ser. B, 49, (2006)
  • [4] Struck B.D., Junginger R., Boltersdorf D., Et al., The anodic oxidation of sulfur dioxide in the sulfuric acid hybrid cycle, Int. J. Hydrogen Energy, 5, pp. 487-497, (1980)
  • [5] Struck B.D., Junginer R., Neumeister H., Et al., A Three-Component Electrolytic Cell for Anodic Oxidation of Sulfur Dioxide and Cathodic Production of Hydrogen, Int. J. Hydrogen Energy, 7, 1, pp. 43-49, (1982)
  • [6] Lu P.W.T., Ammon R.L., Development status of electrolysis technology for the sulfur cycle hydrogen production process, Proc. of the 3rd World Hydrogen Energy Conf, pp. 439-461, (1980)
  • [7] Yamaki T., Kobayashi K., Asano M., Et al., Preparation of proton exchange membranes based on crosslinked polytetrafluoroethelene for fuel cell applications, Polymer, 45, pp. 6569-6573, (2004)
  • [8] Pivovar B.S., Wang Y., Cussler E.L., Pervaporation membranes in direct methanol fuel cells, J. Membr. Sci, 154, pp. 155-162, (1999)