Optimization and discrete fractional-order PID controller applied to a pressure swing adsorption plant for the production and recovery of bioethanol

被引:5
作者
Valdez-Resendiz, Jesus E. [1 ]
Rumbo-Morales, Jesse Y. [2 ]
Sorcia-Vazquez, Felipe D. J. [2 ]
Ortiz-Torres, Gerardo [2 ]
Gomez-Aguilar, J. F. [3 ]
Cantero, Carlos Alberto Torres [4 ,5 ]
Ramos-Martinez, Moises [2 ]
机构
[1] Tecnol Monterrey, Ave Eugenio Garza Sada 2501 Sur, Monterrey 64700, Nuevo Leon, Mexico
[2] Univ Guadalajara, Ctr Univ Los Valles, Carretera Guadalajara Ameca Km 45-5, Ameca 46600, Jalisco, Mexico
[3] CONACyT Tecnol Nacl Mexico CENIDET, Interior Internado Palmira S-N, Cuernavaca 62490, Morelos, Mexico
[4] Tecnol Nacl Mex Campus Colima, Ave Tecnol 1, Colima 28976, Mexico
[5] Univ Colima, Fac Ingn Mecan & Electr, Carretera Colima Coquimatlan Km 9, Colima 28400, Mexico
关键词
Bioethanol; Fractional controllers; Pressure swing adsorption; Optimization; PREDICTIVE CONTROL; SEPARATION; SIMULATION; DERIVATIVES; ETHANOL; SYSTEMS; DESIGN;
D O I
10.1016/j.jclepro.2024.143618
中图分类号
X [环境科学、安全科学];
学科分类号
08 ; 0830 ;
摘要
The results obtained demonstrate significant scientific and technological contributions. The DFOPID controller achieved a purity of 99.50% wt, a recovery of 74.53%, and an energy efficiency of 69.52%, effectively handling disturbances and trajectory changes. In comparison, the discrete PID controller reached a purity of 99.42% wt, a recovery of 74.19%, and an energy efficiency of 61.10%. While the DFOPID exhibited superior performance and faster response to trajectory changes and disturbances, the discrete PID showed better energy efficiency. Both controllers are viable for industrial applications and PSA processes, as they meet the required purity standards for biofuel production.
引用
收藏
页数:20
相关论文
共 62 条
[1]   Chua's circuit model with Atangana-Baleanu derivative with fractional order [J].
Alkahtani, Badr Saad T. .
CHAOS SOLITONS & FRACTALS, 2016, 89 :547-551
[2]   Numerical approximation of Riemann-Liouville definition of fractional derivative: From Riemann-Liouville to Atangana-Baleanu [J].
Atangana, Abdon ;
Gomez-Aguilar, J. F. .
NUMERICAL METHODS FOR PARTIAL DIFFERENTIAL EQUATIONS, 2018, 34 (05) :1502-1523
[3]   NEW FRACTIONAL DERIVATIVES WITH NON-LOCAL AND NON-SINGULAR KERNEL Theory and Application to Heat Transfer Model [J].
Atangana, Abdon ;
Baleanu, Dumitru .
THERMAL SCIENCE, 2016, 20 (02) :763-769
[4]   Preparation of foamed and unfoamed geopolymer/NaX zeolite/activated carbon composites for CO2 adsorption [J].
Candamano, S. ;
Policicchio, A. ;
Conte, G. ;
Abarca, R. ;
Algieri, C. ;
Chakraborty, S. ;
Curcio, S. ;
Calabro, V ;
Crea, F. ;
Agostino, R. G. .
JOURNAL OF CLEANER PRODUCTION, 2022, 330
[5]   Design and Control Applied to an Extractive Distillation Column with Salt for the Production of Bioethanol [J].
Cantero, Carlos Alberto Torres ;
Perez Zuniga, Ricardo ;
Martinez Garcia, Mario ;
Ramos Cabral, Silvia ;
Calixto-Rodriguez, Manuela ;
Valdez Martinez, Jorge Salvador ;
Mena Enriquez, Mayra Guadalupe ;
Perez Estrada, Abraham Jashiel ;
Ortiz Torres, Gerardo ;
Sorcia Vazquez, Felipe de J. ;
Garcia Rebolledo, Azael ;
Rumbo Morales, Jesse Yoe .
PROCESSES, 2022, 10 (09)
[6]   Local Fractional Functional Method for Solving Diffusion Equations on Cantor Sets [J].
Cao, Yuan ;
Ma, Wei-Gang ;
Ma, Lian-Chuan .
ABSTRACT AND APPLIED ANALYSIS, 2014,
[7]   Control of a class of fractional-order chaotic systems via sliding mode [J].
Chen, Di-yi ;
Liu, Yu-xiao ;
Ma, Xiao-yi ;
Zhang, Run-fan .
NONLINEAR DYNAMICS, 2012, 67 (01) :893-901
[8]   Intelligent Fractional-Order Active Fault-Tolerant Sliding Mode Controller for a Knee Joint Orthosis [J].
Delavari, Hadi ;
Jokar, Roya .
JOURNAL OF INTELLIGENT & ROBOTIC SYSTEMS, 2021, 102 (02)
[9]  
Duriez T., 2019, Machine Learning Control-Taming Nonlinear Dynamics and Turbulence
[10]  
Feng Y.Y., 2021, NEW PERSPECTIVE AIMED AT LOCAL FRACTIONAL ORDER MEMRISTOR MODEL ON CANTOR SETS, DOI [10.1142/S0218348X2150011029, DOI 10.1142/S0218348X2150011029]