Modeling the sensitivity of GMI samples by neural networks

被引:2
作者
Da Silva, Eduardo Costa [1 ]
Barbosa, Carlos R. Hall [2 ]
Vellasco, Marley M. B. R. [1 ]
Monteiro, Elisabeth Costa [1 ]
De Gusmão, Luiz A. P. [2 ]
机构
[1] Departamento de Engenharia Elétrica, Pós-MQI, Gávea 22451-900, Rio de Janeiro, RJ, Marquês de São Vicente
[2] Departamento de Engenharia Elétrica, ELE Pontifícia Universidade Católica do Rio de Janeiro, PUC-Rio Rua, Gávea 22451-900, Rio de Janeiro, RJ, Marquês de São Vicente
来源
Controle y Automacao | 2012年 / 23卷 / 05期
关键词
Giant Magnetoimpedance; Magnetic sensor; Modeling; Neural Networks;
D O I
10.1590/S0103-17592012000500010
中图分类号
学科分类号
摘要
Over the past few years, several studies have been developed in order to quantitatively model the GMI effect (Giant Magnetoimpedance). However, these models adopt simplifications that significantly affect its theoretical- experimental performance and its generalization capability, and models that incorporate parameters that generate asymmetry - AGMI (asymmetric GMI) - such as the DC level of the excitation current of the GMI samples are still rare. This work aims to develop a new model, sufficiently general, which also incorporates the asymmetry induced by the DC level of the excitation current, capable of guiding the experimental procedures of characterization of the GMI samples. Thus, this paper proposes, presents and discusses the use of a computational model based on feedforward Multilayer Perceptron Neural Networks to model the impedance magnitude sensitivity and impedance phase sensitivity, of the GMI effect, as functions of the magnetic field, for Co 70Fe 5Si 15B 10 ferromagnetic amorphous alloys. The proposed model allows obtaining these sensitivities based on some of the main parameters that affect it: length of the samples, DC level and frequency of the excitation current and the external magnetic field.
引用
收藏
页码:636 / 648
页数:12
相关论文
共 47 条
  • [1] Andra W., Nowak H., Magnetism in Medicine: A Handbook, (2007)
  • [2] Cavalcanti F.M.P., Desenvolvimento e Caracterização de um Transdutor Magnçtico Baseado no Fenômeno da Magnetoimpedância Gigante, (2005)
  • [3] Chiriac H., Tibu M., Moga A.E., Herea D.D., Magnetic GMI sensor for detection of biomolecules, J. Magn. Magn. Mater., 293, pp. 671-673, (2005)
  • [4] Clarke J., Braginski A.I., The SQUID Handbook, (2006)
  • [5] Delooze P., Panina L.V., Mapps D.J., Ueno K., Sano H., Effect of transverse magnetic field on thin film magnetoimpedance and application to magnetic recording, J. Magn. Magn. Mater., 272-276, pp. 2266-2268, (2004)
  • [6] Fert A., The origin, development and future of spintronics, Nobel Lecture, (2007)
  • [7] Goncalves L.A.P., Efeito Hall Planar e Magnetoimpedância Gigante em Liga Ferromagnetica Amorfa Co70Fe5Si15B10, (2006)
  • [8] Goncalves L.A.P., Soares J.M., Machado F.L.A., De Azevedo W.M., GMI effect in the low magnetostrictive CoFeSiB alloys, Physica B, 384, pp. 152-154, (2006)
  • [9] Grunberg P., From spinwaves to giant magneto magnetoresistence (GMR) and beyond, Nobel Lecture, (2007)
  • [10] Hagan M.T., Menhaj M.B., Training feedforward networks with the marquardt algorithm, IEEE Transactions on Neural Networks, 5, 6, pp. 989-993, (1994)