First-order and Berezinskii-Kosterlitz-Thouless phase transitions in two-dimensional generalized XY models

被引:1
作者
da Silva, P. A. [1 ]
Campos-Lopes, R. J. [2 ]
Pereira, A. R. [1 ]
机构
[1] Univ Fed Vicosa, Dept Fis, Ave Peter Henry Rolfs S-N, BR-36570900 Vicosa, MG, Brazil
[2] Int Sch Adv Studies SISSA, Phys Dept, Condensed Matter Theory, Via Bonomea 265, I-34136 Trieste, Italy
关键词
CONTINUOUS SYMMETRY GROUP; LONG-RANGE ORDER; MONTE-CARLO; REFLECTION POSITIVITY; LATTICE; SIMULATIONS; DESTRUCTION; DYNAMICS; BEHAVIOR; SYSTEMS;
D O I
10.1103/PhysRevB.110.104112
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
Besides the Berezinskii-Kosterlitz-Thouless phase transition, the two-dimensional generalized XY model, identified by a generalization parameter q (as proposed by Romano and Zagrebnov), can also support a first-order phase transition, starting from a critical value q(c). However, the value of q(c) at which this transition takes place is unknown. In this paper, we take two approaches to accurately determine the critical parameter q(c). Furthermore, we show that the model is characterized by three distinct regions concerning both first-order and BerezinskiiKosterlitz-Thouless phase transitions. Finally, the underlying mechanism governing such transitions is presented, along with an estimation of the critical temperatures.
引用
收藏
页数:9
相关论文
共 44 条
[1]  
BEREZINSKII VL, 1972, SOV PHYS JETP-USSR, V34, P610
[2]  
BEREZINSKII VL, 1971, SOV PHYS JETP-USSR, V32, P493
[3]   THEORY OF 1ST-ORDER PHASE-TRANSITIONS [J].
BINDER, K .
REPORTS ON PROGRESS IN PHYSICS, 1987, 50 (07) :783-859
[4]   Reflection Positivity and Phase Transitions in Lattice Spin Models [J].
Biskup, Marek .
METHODS OF CONTEMPORARY MATHEMATICAL STATISTICAL PHYSICS, 2009, 1970 :1-86
[5]   Reentrant behavior of the phase stiffness in Josephson junction arrays [J].
Capriotti, L ;
Cuccoli, A ;
Fubini, A ;
Tognetti, V ;
Vaia, R .
PHYSICAL REVIEW LETTERS, 2003, 91 (24)
[6]   Discontinuity of the spin-wave stiffness in the two-dimensional XY model [J].
Chayes, L .
COMMUNICATIONS IN MATHEMATICAL PHYSICS, 1998, 197 (03) :623-640
[7]   Dynamic behavior of vortices in the classical two-dimensional anisotropic Heisenberg model [J].
Costa, JER ;
Costa, BV ;
Landau, DP .
PHYSICAL REVIEW B, 1998, 57 (18) :11510-11516
[8]   Quantum Monte Carlo study of S=1/2 weakly anisotropic antiferromagnets on the square lattice -: art. no. 104414 [J].
Cuccoli, A ;
Roscilde, T ;
Tognetti, V ;
Vaia, R ;
Verrucchi, P .
PHYSICAL REVIEW B, 2003, 67 (10) :18
[9]   2-DIMENSIONAL XXZ MODEL ON A SQUARE LATTICE - A MONTE-CARLO SIMULATION [J].
CUCCOLI, A ;
TOGNETTI, V ;
VAIA, R .
PHYSICAL REVIEW B, 1995, 52 (14) :10221-10231
[10]   ABSENCE OF BREAKDOWN OF CONTINUOUS SYMMETRY IN 2-DIMENSIONAL MODELS OF STATISTICAL PHYSICS [J].
DOBRUSHIN, RL ;
SHLOSMAN, SB .
COMMUNICATIONS IN MATHEMATICAL PHYSICS, 1975, 42 (01) :31-40