Multiparallel High-Pressure Reaction in a 384 Microplate

被引:0
作者
Allwardt, A. [1 ]
Holzmüller-Laue, S. [2 ]
Wendler, C. [2 ]
Stoll, N. [1 ]
机构
[1] University Rostock, Rostock
[2] Celisca, Rostock
来源
JALA - Journal of the Association for Laboratory Automation | 2007年 / 12卷 / 06期
关键词
catalyst screening; combinatorial chemistry; high-pressure reactions; laboratory automation; microplate reactor;
D O I
10.1016/j.jala.2007.08.003
中图分类号
学科分类号
摘要
In future, laboratories require particularly multivariate laboratory devices. They have to provide an increase of the reactions per time unit and the reduction of the reaction volumes. Furthermore, the devices must be variable integrable in hardware and software in complex laboratory automation systems. The multiparallel high-pressure microplate reactor (HPMR) 50–384 enables the simultaneous execution of up to 384 reactions in a reaction module under reaction pressures up to 50 bar and temperatures in the range from 0 to 100 °C. The homogenization of the reagents is based on a magnetic stirring system. The reaction module is based on a commercially available microplate made of polypropylene, MultiChem, or glass. With a cap mat, a perforated cover plate and a support frame such as microplate will be completed. The gas exchange in the reaction vessels can be ensured with an injection system in the lid of the pressure tank. Thus, the HPMR 50–384 enables the handling of air-sensitive compounds under atmospheric conditions. The possibility of integration into a laboratory automation system or the connection to a LIMS makes the HPMR 50–384 to an all-purpose reaction system. © 2007, Society for Laboratory Automation and Screening. All rights reserved.
引用
收藏
页码:368 / 373
页数:5
相关论文
共 22 条
  • [11] Allgemeine Grundsätze für Werkstoffe, (2002)
  • [12] Richter B., Elstisch bleiben. Langzeitverhalten von O-Ring-Dichtungen, Chemietechnik, 4, pp. 100-102, (2003)
  • [13] Tietze W., Riedl A., Taschenbuch Dichtungstechnik., (2000)
  • [14] Magnetic tumble stirring methods, devices and machines for mixing in vessels, (2002)
  • [15] Cleveland P., Microplate stirring technology, Am. Lab. News Ed., 12, 7, (1998)
  • [16] Blank H.J., Das Embedded PC-Handbuch., (2000)
  • [17] Holzmuller-Laue S., Rimane K., Allwardt A., Thurow K., Process definition and control with LIMS, pp. 653-654, (2006)
  • [18] Astle T., Microplate standardization report, J. Biomol. Screen., 1, 3, pp. 3-8, (1998)
  • [19] Kerwin J., Glass reactor vessel—value sealing innovation, Pharmaceutical Technology Europe, Heft, (2005)
  • [20] Chan A.S.C., Hu W., Pai C.-C., Lau C.-P., Jiang Y., Mi A., Yan M., Sun J., Lou R., Deng J., Novel spiro phosphinite ligands and their application in homogenous catalytic hydrogenation reactions, J. Am. Chem. Soc., 40, 119, pp. 9570-9571, (1997)