Effect of sintering temperature on oxygen permeable performance of La0.6Sr0.4Co0.2Fe0.8O3-δ-Gd0.1Ce0.9O2-δ dual-phase membrane

被引:0
作者
Chang, Jieshan [1 ]
Zhu, Tenglong [1 ]
Yang, Zhibin [1 ]
Han, Minfang [1 ,2 ]
机构
[1] Union Research Center of Fuel Cell, China University of Mining & Technology, Beijing
[2] Department of Thermal Engineering, Tsinghua University, Beijing
来源
Kuei Suan Jen Hsueh Pao/Journal of the Chinese Ceramic Society | 2015年 / 43卷 / 03期
关键词
Dual phase membrane; Microstructure; Oxygen permeation; Sintering temperature;
D O I
10.14062/j.issn.0454-5648.2015.03.10
中图分类号
学科分类号
摘要
Dual phase membranes of La0.6Sr0.4Co0.2Fe0.8O3-δ-Gd0.1Ce0.9O2-δ(LSCF-GDC) were fabricated via dry-pressing. The phase structure, microstructure and oxygen permeation through dual-phase membranes sintered at different temperatures were analyzed by X-ray diffraction, scanning electron microscopy and oxygen permeation techniques, respectively. The results show that the two phases have a good structural compatibility, and there are no other phase and phase transfer when the sintering temperature increases. The oxygen permeability increases with the increase of sintering temperature. The oxygen permeability is 0.14 mL/(cm2·min) at 900 ℃. The activation energy for oxygen permeation through dual-phase membranes gradually decreases with the sintering temperature. ©, 2015, Chinese Ceramic Society. All right reserved.
引用
收藏
页码:311 / 315
页数:4
相关论文
共 16 条
  • [1] Chung Y.T., Anthony G.D., William R.M., Et al., Dense perovskite membrane reactors for partial oxidation of methane to syngas, AIChEJ, 43, 11, pp. 2741-2750, (1997)
  • [2] Orea A., Slater P.R., New chemical systems for solid oxide fuel cells, Chem Mater, 22, 3, pp. 675-690, (2010)
  • [3] Sunarso J., Baumann S., M.serra J., Et al., Mixed ionic electronic conducting (MIEC) ceramic-based membranes for oxygen separation, J Membr Sci, 320, 1-2, pp. 13-41, (2008)
  • [4] Shao Z.P., Sossina M.H., A high-performance cathode for the next generation of solid-oxide fuel cells, Nature, 431, pp. 170-173, (2004)
  • [5] Shao Z.P., Yang W.S., Cong Y., Et al., Investigation of the permeation behavior and stability of a Ba<sub>0.5</sub>Sr<sub>0.5</sub>Co<sub>0.8</sub>Fe<sub>0.2</sub>O<sub>3-δ</sub> oxygen membrane, J Membr Sci, 172, 1-2, pp. 177-188, (2000)
  • [6] Schlehuber D., Wessel E., Singheiser L., Et al., Long-term operation of a La<sub>0.58</sub>Sr<sub>0.4</sub>Co<sub>0.2</sub>Fe<sub>0.8</sub>O<sub>3-δ</sub> membrane for oxygen separation, J Membr Sci, 351, 1-2, pp. 16-20, (2010)
  • [7] Kharton V.V., Kovalevsky A.V., Viskup A.P., Et al., Oxygen permeability of Ce<sub>0.8</sub>Gd<sub>0.2</sub>O<sub>2-δ</sub>-La<sub>0.7</sub>Sr<sub>0.3</sub>MnO<sub>3-δ</sub> composite membranes, J Electrochem Soc, 147, 7, pp. 2814-2821, (2000)
  • [8] Wang B., Zhan M.C., Zhu D.C., Oxygen permeation and stability of Zr<sub>0.8</sub>Y<sub>0.2</sub>O<sub>2-δ</sub>-La<sub>0.8</sub>Sr<sub>0.2</sub>CrO<sub>3-δ</sub> dual-phase composite, J Solid State Electrochem, 10, 8, pp. 625-628, (2006)
  • [9] Kharton V.V., Tikhonovich V.N., Li S.B., Et al., Ceramic microstructure and oxygen permeability of SrCo(Fe, M)O<sub>3-δ</sub> (M=Cu or Cr) perovskite membranes, J Electrochem Soc, 145, 4, pp. 1363-1373, (1998)
  • [10] Zeng P.Y., Ran R., Chen Z.C., Shao Z.P., Et al., Significant effects of sintering temperature on the performance of La<sub>0.6</sub>Sr<sub>0.4</sub>Co<sub>0.2</sub>Fe<sub>0.8</sub>O<sub>3-δ</sub> oxygen selective membranes, J Membr Sci, 302, 1-2, pp. 171-179, (2007)